
TNeo
v1.09

Generated by Doxygen 1.8.17

i

1 TNeo overview 1

2 Foreword 3

3 Features 5

3.1 Feature list . 5

4 Quick guide 7

4.1 Using TNeo in your application . 7

4.2 Time ticks . 7

4.3 Starting the kernel . 8

4.3.0.1 Quick guide on startup process . 8

4.3.0.2 Basic example for PIC32 . 8

4.4 Round-robin scheduling . 11

5 Time ticks 13

5.1 Static tick . 13

5.2 Dynamic tick . 13

6 Interrupts 15

6.1 Interrupt stack . 15

6.2 Interrupt types . 15

7 Building TNeo 17

7.1 Configuration file . 17

7.2 Makefile or library projects . 17

7.2.1 Makefile . 18

7.2.2 Library project . 19

7.3 Building manually . 19

8 Architecture-specific details 21

8.1 PIC32 port details . 21

8.1.1 Context switch . 21

8.1.2 Interrupts . 21

8.1.3 Building . 22

8.2 PIC24/dsPIC port details . 23

8.2.1 Context switch . 23

8.2.2 Interrupts . 23

8.2.3 Atomic access to the structure bit field . 24

8.2.4 Building . 24

8.3 Cortex-M0/M0+/M3/M4/M4F port details . 24

8.3.1 Context switch . 24

8.3.2 Interrupts . 24

8.3.3 Building . 25

Generated by Doxygen

ii

9 Why reimplement TNKernel 27

9.1 Essential problems of TNKernel . 27

9.2 Examples of poor implementation . 27

9.2.1 One entry point, one exit point . 27

9.2.2 Don't repeat yourself . 29

9.2.3 Macros that return from function . 29

9.2.4 Code for doubly-linked lists . 30

9.3 Bugs of TNKernel 2.7 . 30

10 Differences from TNKernel API 33

10.1 Incompatible API changes . 33

10.1.1 System startup . 33

10.1.2 Task creation API . 33

10.1.3 Task wakeup count, activate count, suspend count . 34

10.1.4 Fixed memory pool: non-aligned address or block size . 34

10.1.5 Task service return values cleaned . 35

10.1.6 Force task releasing from wait . 35

10.1.7 Return code of tn_task_sleep() . 35

10.1.8 Events API is changed almost completely . 35

10.1.9 Zero timeout given to system functions . 36

10.2 New features . 36

10.3 Compatible API changes . 36

10.3.1 Macro MAKE_ALIG() . 36

10.3.2 Convenience macros for stack arrays definition . 36

10.3.3 Convenience macros for fixed memory block pool buffers definition 37

10.3.4 Things renamed . 37

10.3.5 We should wait for semaphore, not acquire it . 37

10.4 Changes that do not affect API directly . 37

10.4.1 No timer task . 37

11 Unit tests 39

11.1 Tested CPUs . 39

11.2 How tests are implemented . 39

11.3 Get unit-tests . 41

12 Plans 43

13 Contribution 45

13.1 Contribution . 45

13.2 Coding standard . 45

14 Changelog 47

14.1 Current development version (BETA) . 47

14.2 v1.09 . 47

Generated by Doxygen

iii

14.3 v1.08 . 48

14.4 v1.07 . 48

14.5 v1.06 . 49

14.6 v1.04 . 49

14.7 v1.03 . 50

14.8 v1.02 . 50

14.9 v1.01 . 50

14.10 v1.0 . 50

15 Thanks 51

16 License 53

17 Legend 55

18 Data Structure Index 57

18.1 Data Structures . 57

19 File Index 59

19.1 File List . 59

20 Data Structure Documentation 61

20.1 _TN_BuildCfg Struct Reference . 61

20.1.1 Detailed Description . 61

20.2 _TN_TaskProfiler Struct Reference . 62

20.2.1 Detailed Description . 62

20.2.2 Field Documentation . 62

20.2.2.1 last_wait_reason . 63

20.2.2.2 timing . 63

20.3 TN_DQueue Struct Reference . 63

20.3.1 Detailed Description . 63

20.3.2 Field Documentation . 64

20.3.2.1 id_dque . 64

20.4 TN_DQueueTaskWait Struct Reference . 64

20.4.1 Detailed Description . 64

20.5 TN_EGrpLink Struct Reference . 64

20.5.1 Detailed Description . 64

20.6 TN_EGrpTaskWait Struct Reference . 65

20.6.1 Detailed Description . 65

20.7 TN_EventGrp Struct Reference . 65

20.7.1 Detailed Description . 65

20.7.2 Field Documentation . 66

20.7.2.1 id_event . 66

20.8 TN_FMem Struct Reference . 66

Generated by Doxygen

iv

20.8.1 Detailed Description . 66

20.8.2 Field Documentation . 67

20.8.2.1 id_fmp . 67

20.8.2.2 block_size . 67

20.8.2.3 free_list . 67

20.9 TN_FMemTaskWait Struct Reference . 67

20.9.1 Detailed Description . 67

20.10 TN_ListItem Struct Reference . 68

20.10.1 Detailed Description . 68

20.11 TN_Mutex Struct Reference . 68

20.11.1 Detailed Description . 68

20.11.2 Field Documentation . 69

20.11.2.1 id_mutex . 69

20.12 TN_Sem Struct Reference . 69

20.12.1 Detailed Description . 69

20.12.2 Field Documentation . 70

20.12.2.1 id_sem . 70

20.13 TN_Task Struct Reference . 70

20.13.1 Detailed Description . 70

20.13.2 Field Documentation . 72

20.13.2.1 id_task . 72

20.13.2.2 deadlock_list . 72

20.13.2.3 stack_low_addr . 72

20.13.2.4 stack_high_addr . 73

20.13.2.5 subsys_wait . 73

20.13.2.6 priority_already_updated . 73

20.14 TN_TaskTiming Struct Reference . 73

20.14.1 Detailed Description . 73

20.14.2 Field Documentation . 74

20.14.2.1 total_run_time . 74

20.14.2.2 got_running_cnt . 74

20.14.2.3 total_wait_time . 75

20.14.2.4 max_consecutive_wait_time . 75

20.15 TN_Timer Struct Reference . 75

20.15.1 Detailed Description . 75

20.15.2 Field Documentation . 76

20.15.2.1 id_timer . 76

20.15.2.2 start_tick_cnt . 76

20.15.2.3 timeout . 77

20.15.2.4 timeout_cur . 77

21 File Documentation 79

Generated by Doxygen

v

21.1 arch/cortex_m/tn_arch_cortex_m.h File Reference . 79

21.1.1 Detailed Description . 79

21.2 arch/example/tn_arch_example.h File Reference . 79

21.2.1 Detailed Description . 79

21.2.2 Macro Definition Documentation . 80

21.2.2.1 _TN_FFS . 80

21.2.2.2 _TN_FATAL_ERRORF . 81

21.2.2.3 TN_ARCH_STK_ATTR_BEFORE . 81

21.2.2.4 TN_ARCH_STK_ATTR_AFTER . 81

21.2.2.5 TN_PRIORITIES_MAX_CNT . 82

21.2.2.6 TN_INTSAVE_DATA . 82

21.2.2.7 TN_INTSAVE_DATA_INT . 82

21.2.2.8 TN_INT_DIS_SAVE . 83

21.2.2.9 TN_INT_RESTORE . 83

21.2.2.10 TN_INT_IDIS_SAVE . 83

21.2.2.11 TN_INT_IRESTORE . 84

21.2.2.12 _TN_SIZE_BYTES_TO_UWORDS . 84

21.2.2.13 _TN_INLINE . 84

21.2.2.14 _TN_VOLATILE_WORKAROUND . 84

21.2.3 Typedef Documentation . 85

21.2.3.1 TN_UWord . 85

21.2.3.2 TN_UIntPtr . 85

21.3 arch/pic24_dspic/tn_arch_pic24.h File Reference . 85

21.3.1 Detailed Description . 85

21.3.2 Macro Definition Documentation . 85

21.3.2.1 tn_p24_soft_isr . 86

21.4 arch/pic24_dspic/tn_arch_pic24_bfa.h File Reference . 86

21.4.1 Detailed Description . 86

21.4.2 Macro Definition Documentation . 87

21.4.2.1 TN_BFA . 87

21.4.2.2 TN_BFAR . 88

21.5 arch/pic32/tn_arch_pic32.h File Reference . 88

21.5.1 Detailed Description . 88

21.5.2 Macro Definition Documentation . 89

21.5.2.1 tn_p32_soft_isr . 89

21.5.2.2 tn_p32_srs_isr . 89

21.5.3 Variable Documentation . 90

21.5.3.1 tn_p32_int_nest_count . 90

21.5.3.2 tn_p32_user_sp . 90

21.5.3.3 tn_p32_int_sp . 90

21.6 arch/pic32/tn_arch_pic32_bfa.h File Reference . 91

21.6.1 Detailed Description . 91

Generated by Doxygen

vi

21.6.2 Macro Definition Documentation . 91

21.6.2.1 TN_BFA . 91

21.6.2.2 TN_BFAR . 92

21.7 arch/tn_arch.h File Reference . 93

21.7.1 Detailed Description . 93

21.7.2 Function Documentation . 94

21.7.2.1 tn_arch_int_dis() . 94

21.7.2.2 tn_arch_int_en() . 94

21.7.2.3 tn_arch_sr_save_int_dis() . 94

21.7.2.4 tn_arch_sr_restore() . 94

21.7.2.5 tn_arch_sched_dis_save() . 95

21.7.2.6 tn_arch_sched_restore() . 95

21.7.2.7 _tn_arch_stack_init() . 95

21.7.2.8 _tn_arch_inside_isr() . 96

21.7.2.9 _tn_arch_is_int_disabled() . 96

21.7.2.10 _tn_arch_context_switch_pend() . 96

21.7.2.11 _tn_arch_context_switch_now_nosave() . 97

21.7.2.12 _tn_arch_sys_start() . 98

21.8 core/tn_cfg_dispatch.h File Reference . 98

21.8.1 Detailed Description . 98

21.8.2 Macro Definition Documentation . 98

21.8.2.1 TN_API_MAKE_ALIG_ARG__TYPE . 98

21.8.2.2 TN_API_MAKE_ALIG_ARG__SIZE . 99

21.9 core/tn_common.h File Reference . 99

21.9.1 Detailed Description . 99

21.9.2 Macro Definition Documentation . 100

21.9.2.1 TN_MAKE_ALIG_SIZE . 100

21.9.2.2 _TN_UNUSED . 100

21.9.3 Typedef Documentation . 100

21.9.3.1 TN_TickCnt . 101

21.9.4 Enumeration Type Documentation . 101

21.9.4.1 TN_ObjId . 101

21.9.4.2 TN_RCode . 102

21.10 core/tn_common_macros.h File Reference . 103

21.10.1 Detailed Description . 103

21.10.2 Macro Definition Documentation . 103

21.10.2.1 _TN_STRINGIFY_LITERAL . 104

21.10.2.2 _TN_STRINGIFY_MACRO . 104

21.11 core/tn_dqueue.h File Reference . 104

21.11.1 Detailed Description . 104

21.11.2 Function Documentation . 105

21.11.2.1 tn_queue_create() . 105

Generated by Doxygen

vii

21.11.2.2 tn_queue_delete() . 106

21.11.2.3 tn_queue_send() . 106

21.11.2.4 tn_queue_send_polling() . 108

21.11.2.5 tn_queue_isend_polling() . 108

21.11.2.6 tn_queue_receive() . 109

21.11.2.7 tn_queue_receive_polling() . 109

21.11.2.8 tn_queue_ireceive_polling() . 110

21.11.2.9 tn_queue_free_items_cnt_get() . 110

21.11.2.10 tn_queue_used_items_cnt_get() . 110

21.11.2.11 tn_queue_eventgrp_connect() . 111

21.11.2.12 tn_queue_eventgrp_disconnect() . 111

21.12 core/tn_eventgrp.h File Reference . 111

21.12.1 Detailed Description . 111

21.12.2 Connecting an event group to other system objects . 112

21.12.3 Enumeration Type Documentation . 113

21.12.3.1 TN_EGrpWaitMode . 113

21.12.3.2 TN_EGrpOp . 114

21.12.3.3 TN_EGrpAttr . 114

21.12.4 Function Documentation . 115

21.12.4.1 tn_eventgrp_create_wattr() . 115

21.12.4.2 tn_eventgrp_create() . 115

21.12.4.3 tn_eventgrp_delete() . 116

21.12.4.4 tn_eventgrp_wait() . 116

21.12.4.5 tn_eventgrp_wait_polling() . 117

21.12.4.6 tn_eventgrp_iwait_polling() . 117

21.12.4.7 tn_eventgrp_modify() . 118

21.12.4.8 tn_eventgrp_imodify() . 118

21.13 core/tn_fmem.h File Reference . 118

21.13.1 Detailed Description . 118

21.13.2 Macro Definition Documentation . 119

21.13.2.1 TN_FMEM_BUF_DEF . 119

21.13.3 Function Documentation . 120

21.13.3.1 tn_fmem_create() . 120

21.13.3.2 tn_fmem_delete() . 121

21.13.3.3 tn_fmem_get() . 121

21.13.3.4 tn_fmem_get_polling() . 122

21.13.3.5 tn_fmem_iget_polling() . 122

21.13.3.6 tn_fmem_release() . 122

21.13.3.7 tn_fmem_irelease() . 123

21.13.3.8 tn_fmem_free_blocks_cnt_get() . 123

21.13.3.9 tn_fmem_used_blocks_cnt_get() . 123

21.14 core/tn_list.h File Reference . 124

Generated by Doxygen

viii

21.14.1 Detailed Description . 124

21.15 core/tn_mutex.h File Reference . 124

21.15.1 Detailed Description . 124

21.15.2 Enumeration Type Documentation . 125

21.15.2.1 TN_MutexProtocol . 125

21.15.3 Function Documentation . 126

21.15.3.1 tn_mutex_create() . 126

21.15.3.2 tn_mutex_delete() . 126

21.15.3.3 tn_mutex_lock() . 126

21.15.3.4 tn_mutex_lock_polling() . 127

21.15.3.5 tn_mutex_unlock() . 127

21.16 core/tn_oldsymbols.h File Reference . 128

21.16.1 Detailed Description . 128

21.16.2 Macro Definition Documentation . 131

21.16.2.1 MAKE_ALIG . 131

21.16.2.2 TN_EVENT_ATTR_SINGLE . 131

21.16.2.3 TN_EVENT_ATTR_MULTI . 132

21.16.2.4 TN_EVENT_ATTR_CLR . 132

21.16.2.5 tn_event_create . 132

21.16.2.6 tn_event_delete . 132

21.16.2.7 tn_event_wait . 132

21.16.2.8 tn_event_wait_polling . 133

21.16.2.9 tn_event_iwait . 133

21.16.2.10 tn_event_set . 133

21.16.2.11 tn_event_iset . 133

21.16.2.12 tn_event_clear . 133

21.16.2.13 tn_event_iclear . 134

21.17 core/tn_sem.h File Reference . 134

21.17.1 Detailed Description . 134

21.17.2 Function Documentation . 135

21.17.2.1 tn_sem_create() . 135

21.17.2.2 tn_sem_delete() . 135

21.17.2.3 tn_sem_signal() . 135

21.17.2.4 tn_sem_isignal() . 136

21.17.2.5 tn_sem_wait() . 136

21.17.2.6 tn_sem_wait_polling() . 136

21.17.2.7 tn_sem_iwait_polling() . 137

21.18 core/tn_sys.h File Reference . 137

21.18.1 Detailed Description . 137

21.18.2 Macro Definition Documentation . 138

21.18.2.1 TN_STACK_ARR_DEF . 139

21.18.2.2 _TN_BUILD_CFG_ARCH_STRUCT_FILL . 139

Generated by Doxygen

ix

21.18.2.3 _TN_BUILD_CFG_STRUCT_FILL . 139

21.18.3 Typedef Documentation . 139

21.18.3.1 TN_CBUserTaskCreate . 140

21.18.3.2 TN_CBIdle . 140

21.18.3.3 TN_CBStackOverflow . 140

21.18.3.4 TN_CBDeadlock . 141

21.18.4 Enumeration Type Documentation . 141

21.18.4.1 TN_StateFlag . 141

21.18.4.2 TN_Context . 141

21.18.5 Function Documentation . 142

21.18.5.1 tn_sys_start() . 142

21.18.5.2 tn_tick_int_processing() . 142

21.18.5.3 tn_sys_tslice_set() . 143

21.18.5.4 tn_sys_time_get() . 143

21.18.5.5 tn_callback_deadlock_set() . 143

21.18.5.6 tn_callback_stack_overflow_set() . 144

21.18.5.7 tn_sys_state_flags_get() . 144

21.18.5.8 tn_sys_context_get() . 144

21.18.5.9 tn_is_task_context() . 144

21.18.5.10 tn_is_isr_context() . 144

21.18.5.11 tn_cur_task_get() . 145

21.18.5.12 tn_cur_task_body_get() . 145

21.18.5.13 tn_sched_dis_save() . 145

21.18.5.14 tn_sched_restore() . 145

21.18.5.15 tn_callback_dyn_tick_set() . 146

21.19 core/tn_tasks.h File Reference . 146

21.19.1 Detailed Description . 146

21.19.2 Task . 146

21.19.3 Task states . 146

21.19.4 Creating/starting tasks . 146

21.19.5 Stopping/deleting tasks . 146

21.19.6 Scheduling rules . 147

21.19.7 Idle task . 147

21.19.8 Enumeration Type Documentation . 148

21.19.8.1 TN_TaskState . 148

21.19.8.2 TN_WaitReason . 149

21.19.8.3 TN_TaskCreateOpt . 150

21.19.8.4 TN_TaskExitOpt . 150

21.19.9 Function Documentation . 150

21.19.9.1 tn_task_create() . 150

21.19.9.2 tn_task_suspend() . 151

21.19.9.3 tn_task_resume() . 152

Generated by Doxygen

x

21.19.9.4 tn_task_sleep() . 152

21.19.9.5 tn_task_wakeup() . 153

21.19.9.6 tn_task_iwakeup() . 153

21.19.9.7 tn_task_activate() . 153

21.19.9.8 tn_task_iactivate() . 154

21.19.9.9 tn_task_release_wait() . 154

21.19.9.10 tn_task_irelease_wait() . 154

21.19.9.11 tn_task_exit() . 155

21.19.9.12 tn_task_terminate() . 155

21.19.9.13 tn_task_delete() . 156

21.19.9.14 tn_task_state_get() . 156

21.19.9.15 tn_task_profiler_timing_get() . 156

21.19.9.16 tn_task_change_priority() . 157

21.20 core/tn_timer.h File Reference . 157

21.20.1 Detailed Description . 157

21.20.2 Implementation of static timers . 157

21.20.3 Typedef Documentation . 159

21.20.3.1 TN_TimerFunc . 159

21.20.3.2 TN_CBTickSchedule . 159

21.20.3.3 TN_CBTickCntGet . 160

21.20.4 Function Documentation . 160

21.20.4.1 tn_timer_create() . 160

21.20.4.2 tn_timer_delete() . 160

21.20.4.3 tn_timer_start() . 161

21.20.4.4 tn_timer_cancel() . 161

21.20.4.5 tn_timer_set_func() . 162

21.20.4.6 tn_timer_is_active() . 162

21.20.4.7 tn_timer_time_left() . 162

21.21 tn.h File Reference . 163

21.21.1 Detailed Description . 163

21.22 tn_app_check.c File Reference . 163

21.22.1 Detailed Description . 163

21.22.2 Function Documentation . 163

21.22.2.1 you_should_add_file___tn_app_check_c___to_the_project() 163

21.23 tn_cfg_default.h File Reference . 163

21.23.1 Detailed Description . 163

21.23.2 Macro Definition Documentation . 165

21.23.2.1 TN_CHECK_BUILD_CFG . 165

21.23.2.2 TN_PRIORITIES_CNT . 165

21.23.2.3 TN_CHECK_PARAM . 165

21.23.2.4 TN_DEBUG . 166

21.23.2.5 TN_OLD_TNKERNEL_NAMES . 166

Generated by Doxygen

xi

21.23.2.6 TN_MUTEX_DEADLOCK_DETECT . 166

21.23.2.7 TN_TICK_LISTS_CNT . 166

21.23.2.8 TN_API_MAKE_ALIG_ARG . 166

21.23.2.9 TN_PROFILER . 167

21.23.2.10 TN_PROFILER_WAIT_TIME . 167

21.23.2.11 TN_INIT_INTERRUPT_STACK_SPACE . 167

21.23.2.12 TN_STACK_OVERFLOW_CHECK . 167

21.23.2.13 TN_OLD_EVENT_API . 168

21.23.2.14 TN_MAX_INLINE . 168

21.23.2.15 TN_P24_SYS_IPL . 168

Index 169

Generated by Doxygen

Chapter 1

TNeo overview

TNeo is a compact and fast real-time kernel for embedded 32/16 bits microprocessors. It performs a preemptive
priority-based scheduling.

TNeo was born as a thorough review and re-implementation of TNKernel 2.7. The new kernel has well-formed
code, inherited bugs are fixed as well as new features being added, it is well documented and tested carefully with
unit-tests.

Currently it is available for the following architectures:

• Microchip: PIC32/PIC24/dsPIC

• ARM Cortex-M cores: Cortex-M0/M0+/M1/M3/M4/M4F

API is changed somewhat, so it's not 100% compatible with TNKernel, hence the new name: TNeo.

TNeo is hosted at bitbucket: http://bitbucket.org/dfrank/tneokernel

Related pages:

• Foreword

• Features

• Quick guide

• Time ticks

• Interrupts

• Building TNeo

• Architecture-specific details

– PIC32 port details

– PIC24/dsPIC port details

– Cortex-M0/M0+/M3/M4/M4F port details

• Why reimplement TNKernel

• Differences from TNKernel API

• Unit tests

http://tnkernel.com
http://bitbucket.org/dfrank/tneokernel

2 TNeo overview

• Plans

• Contribution

• Changelog

• Thanks

• License

• Legend

API reference:

• System services

• Tasks

• Mutexes

• Semaphores

• Fixed-size memory blocks

• Event groups

• Data queues

• Timers

Generated by Doxygen

Chapter 2

Foreword

Foreword.

This project was initially a fork of PIC32 TNKernel port by Anders Montonen. I don't like several design
decisions of original TNKernel, as well as many of the implementation details, but Anders wants to keep his port as
close to original TNKernel as possible. So I decided to fork it and have fun implementing what I want.

The more I get into how TNKernel works, the less I like its code. It appears as a very hastily-written project: there
is a lot of code duplication and a lot of inconsistency, all of this leads to bugs. More, TNKernel is not documented
well enough and there are no unit tests for it, so I decided to reimplement it almost completely. Refer to the page
Why reimplement TNKernel for details.

I decided not to care too much about compatibility with original TNKernel API because I really don't like several API
decisions, so, I actually had to choose new name for this project, in order to avoid confusion, hence "TNeo". Refer
to the Differences from TNKernel API page for details.

Together with almost totally re-writing TNKernel, I've implemented detailed unit tests for it, to make sure I didn't break
anything, and of course I've found several bugs in original TNKernel 2.7: refer to the section Bugs of TNKernel 2.7.
Unit tests are, or course, a "must-have" for the project like this; it's so strange bug original TNKernel seems untested.

Note that PIC32-dependent routines (such as context switch and so on) are originally implemented by Anders
Montonen; I examined them in detail and changed several things which I believe should be implemented differently.
Anders, great thanks for sharing your job.

Another existing PIC32 port, the one by Alex Borisov, also affected my project a bit. In fact, I used to
use Alex's port for a long time, but it has several concepts that I don't like, so I had to move eventually. Nevertheless,
Alex's port has several nice ideas and solutions, so I didn't hesitate to take what I like from his port. Alex, thank you
too.

And, of course, great thanks to the author of original TNKernel, Yuri Tiomkin. Although the implementation of T←↩

NKernel is far from perfect in my opinion, the ideas behind the implementation are generally really nice (that's why
I decided to reimplement it instead of starting from scratch), and it was great entry point to the real-time kernels for
me.

I would also like to thank my chiefs in the ORION company, Alexey Morozov and Alexey Gromov, for being flexible
about my time.

For the full thanks list, refer to the page Thanks.

https://github.com/andersm/TNKernel-PIC32
http://www.tnkernel.com/tn_port_pic24_dsPIC_PIC32.html
http://orionspb.ru/

4 Foreword

Generated by Doxygen

Chapter 3

Features

TNeo has a complete set of common RTOS features plus some extras. Many features are optional, so that if you
don't need them you can configure the kernel as you wish and probably save memory or improve speed.

3.1 Feature list

• Tasks, or threads: the most common feature for which the kernel is written in the first place;

• Mutexes: objects for shared resources protection.

– Recursive mutexes: optionally, mutexes allow nested locking. Refer to the #TN_MUTEX_REC option
for details;

– Mutex deadlock detection: if deadlock occurs, the kernel can notify you about this problem by calling
arbitrary function. Refer to the #TN_MUTEX_DEADLOCK_DETECT option for details.

• Semaphores: objects for tasks synchronization;

• Fixed-size memory blocks: simple and deterministic memory allocator;

• Event groups: objects containing various event bits that tasks may set, clear and wait for;

– Event group connection: extremely useful feature when you need to wait, say, for messages from multi-
ple queues, or for other set of different events.

• Data queues: FIFO buffer of messages that tasks may send and receive;

• Timers: a tool to ask the kernel to call arbitrary function at a particular time in the future. The callback
approach provides ultimate flexibility.

• Separate interrupt stack: interrupts use separate stack, this approach saves a lot of RAM. Refer to the page
Interrupts for details.

• Software stack overflow check: extremely useful feature for architectures without hardware stack pointer
limit. Refer to the #TN_STACK_OVERFLOW_CHECK option for details.

• Dynamic tick: if there's nothing to do, don't even bother to manage system timer tick each fixed period of
time. Refer to the page Time ticks for details.

• Profiler: allows you to know how much time each of your tasks was actually running, get maximum consec-
utive running time of it, and other relevant information. Refer to the option #TN_PROFILER and struct
#TN_TaskTiming for details.

6 Features

Generated by Doxygen

Chapter 4

Quick guide

This page contains quick guide on system startup and important implementation details.

4.1 Using TNeo in your application

The easiest way is to download version archive from downloads page: it contains bin folder with library files
for various platforms. These library files were built with default configuration file (src/tn_cfg_default.h, see
the section Configuration file).

If you use MPLABX, it is probably better to add library project to your main project instead; library projects reside in
the <tneo_path>/lib_project directory.

In either case, all you need is the following:

• Add library file for appropriate platform to your project (or probably library project in case of MPLABX);

• Add C include path: <tneo_path>/src;

• Copy default configuration file as current configuration file: cp <tneo_path>/src/tn_cfg_←↩

default.h <tneo_path>/src/tn_cfg.h (for more information about configuration file and better
ways to manage it, refer to the section Configuration file)

• Add the file <tneo_path>/src/tn_app_check.c to your application project (see #TN_CHECK_←↩

BUILD_CFG for details on it).

That's all; you can use it in your project now. See below how to do this.

Attention

If you need to change the configuration, you can't just edit tn_cfg.h and keep using pre-built library file:
you need to rebuild the library after editing tn_cfg.h. Refer to the page Building TNeo for details.

4.2 Time ticks

The kernel needs to calculate timeouts. There are two schemes available: static tick and dynamic tick. For a quick
guide, it's quite enough to just read about static tick, so, for the details on it, refer to the section Static tick and then
return back here.

https://bitbucket.org/dfrank/tneokernel/downloads

8 Quick guide

4.3 Starting the kernel

4.3.0.1 Quick guide on startup process

• You allocate arrays for idle task stack and interrupt stack, there is a convenience macro TN_STACK_ARR_DEF()
for that. It is good idea to consult the #TN_MIN_STACK_SIZE to determine stack sizes (see example
below).

• You provide callback function like void init_task_create(void) { ... }, in which at least
one (and typically just one) your own task should be created and activated. This task should perform appli-
cation initialization and create all the rest of tasks. See details in TN_CBUserTaskCreate().

• You provide idle callback function to be called periodically from idle task. It's quite fine to leave it empty.

• In the main() you should:

– disable system interrupts by calling tn_arch_int_dis();

– perform some essential CPU configuration, such as oscillator settings and similar things.

– setup system timer interrupt (from which tn_tick_int_processing() gets called)

– call tn_sys_start() providing all necessary information: pointers to stacks, their sizes and your
callback functions.

• Kernel acts as follows:

– performs all necessary housekeeping;

– creates idle task;

– calls your TN_CBUserTaskCreate() callback, in which your initial task is created with #TN_TA←↩

SK_CREATE_OPT_START option;

– performs first context switch (to your task with highest priority).

• At this point, system operates normally: your initial task gets executed and you can call whatever system
services you need. Typically, your initial task acts then as follows:

– Perform initialization of various on-board peripherals (displays, flash memory chips, or whatever);

– Initialize software modules used by application;

– Create all the rest of your tasks (since everything is initialized already so that they can proceed with
their job);

– Eventually, perform its primary job (the job for which task was created at all).

4.3.0.2 Basic example for PIC32

This example project can be found in the TNeo repository, in the examples/basic/arch/pic32 directory.

Attention

Before trying to build examples, please read Building TNeo page carefully: you need to copy configuration file
in the tneo directory to build it. Each example has tn_cfg_appl.h file, and you should either create a
symbolic link to this file from tneo/src/tn_cfg.h or just copy this file as tneo/src/tn_cfg.h.

Generated by Doxygen

4.3 Starting the kernel 9

/**
* TNeo PIC32 basic example

*/
/***
* INCLUDED FILES

**/
#include <xc.h>
#include <plib.h>
#include <stdint.h>
#include "tn.h"
/***
* PIC32 HARDWARE CONFIGURATION

**/
#pragma config FNOSC = PRIPLL // Oscillator Selection
#pragma config FPLLIDIV = DIV_4 // PLL Input Divider (PIC32 Starter Kit: use divide by 2 only)
#pragma config FPLLMUL = MUL_20 // PLL Multiplier
#pragma config FPLLODIV = DIV_1 // PLL Output Divider
#pragma config FPBDIV = DIV_2 // Peripheral Clock divisor
#pragma config FWDTEN = OFF // Watchdog Timer
#pragma config WDTPS = PS1 // Watchdog Timer Postscale
#pragma config FCKSM = CSDCMD // Clock Switching & Fail Safe Clock Monitor
#pragma config OSCIOFNC = OFF // CLKO Enable
#pragma config POSCMOD = HS // Primary Oscillator
#pragma config IESO = OFF // Internal/External Switch-over
#pragma config FSOSCEN = OFF // Secondary Oscillator Enable
#pragma config CP = OFF // Code Protect
#pragma config BWP = OFF // Boot Flash Write Protect
#pragma config PWP = OFF // Program Flash Write Protect
#pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select
#pragma config DEBUG = OFF // Debugger Disabled for Starter Kit
/***
* MACROS

**/
//-- instruction that causes debugger to halt
#define PIC32_SOFTWARE_BREAK() __asm__ volatile ("sdbbp 0")
//-- system frequency
#define SYS_FREQ 80000000UL
//-- peripheral bus frequency
#define PB_FREQ 40000000UL
//-- kernel ticks (system timer) frequency
#define SYS_TMR_FREQ 1000
//-- system timer prescaler
#define SYS_TMR_PRESCALER T5_PS_1_8
#define SYS_TMR_PRESCALER_VALUE 8
//-- system timer period (auto-calculated)
#define SYS_TMR_PERIOD \

(PB_FREQ / SYS_TMR_PRESCALER_VALUE / SYS_TMR_FREQ)
//-- idle task stack size, in words
#define IDLE_TASK_STACK_SIZE (TN_MIN_STACK_SIZE + 32)
//-- interrupt stack size, in words
#define INTERRUPT_STACK_SIZE (TN_MIN_STACK_SIZE + 64)
//-- stack sizes of user tasks
#define TASK_A_STK_SIZE (TN_MIN_STACK_SIZE + 96)
#define TASK_B_STK_SIZE (TN_MIN_STACK_SIZE + 96)
#define TASK_C_STK_SIZE (TN_MIN_STACK_SIZE + 96)
//-- user task priorities
#define TASK_A_PRIORITY 7
#define TASK_B_PRIORITY 6
#define TASK_C_PRIORITY 5
/***
* DATA

**/
//-- Allocate arrays for stacks: stack for idle task
// and for interrupts are the requirement of the kernel;
// others are application-dependent.
//
// We use convenience macro TN_STACK_ARR_DEF() for that.
TN_STACK_ARR_DEF(idle_task_stack, IDLE_TASK_STACK_SIZE);
TN_STACK_ARR_DEF(interrupt_stack, INTERRUPT_STACK_SIZE);
TN_STACK_ARR_DEF(task_a_stack, TASK_A_STK_SIZE);
TN_STACK_ARR_DEF(task_b_stack, TASK_B_STK_SIZE);
TN_STACK_ARR_DEF(task_c_stack, TASK_C_STK_SIZE);
//-- task structures
struct TN_Task task_a = {};
struct TN_Task task_b = {};
struct TN_Task task_c = {};
/***
* ISRs

**/

/**
* system timer ISR

*/
tn_p32_soft_isr(_TIMER_5_VECTOR)
{

INTClearFlag(INT_T5);
tn_tick_int_processing();

Generated by Doxygen

10 Quick guide

}
/***
* FUNCTIONS

**/
void appl_init(void);
void task_a_body(void *par)
{

//-- this is a first created application task, so it needs to perform
// all the application initialization.
appl_init();
//-- and then, let’s get to the primary job of the task
// (job for which task was created at all)
for(;;)
{

mPORTEToggleBits(BIT_0);
tn_task_sleep(500);

}
}
void task_b_body(void *par)
{

for(;;)
{

mPORTEToggleBits(BIT_1);
tn_task_sleep(1000);

}
}
void task_c_body(void *par)
{

for(;;)
{

mPORTEToggleBits(BIT_2);
tn_task_sleep(1500);

}
}

/**
* Hardware init: called from main() with interrupts disabled

*/
void hw_init(void)
{

SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);
//turn off ADC function for all pins
AD1PCFG = 0xffffffff;
//-- enable timer5 interrupt
OpenTimer5((0

| T5_ON
| T5_IDLE_STOP
| SYS_TMR_PRESCALER
| T5_SOURCE_INT
),

(SYS_TMR_PERIOD - 1)
);

//-- set timer5 interrupt priority to 2, enable it
INTSetVectorPriority(INT_TIMER_5_VECTOR, INT_PRIORITY_LEVEL_2);
INTSetVectorSubPriority(INT_TIMER_5_VECTOR, INT_SUB_PRIORITY_LEVEL_0);
INTClearFlag(INT_T5);
INTEnable(INT_T5, INT_ENABLED);
//-- enable multi-vectored interrupt mode
INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);

}

/**
* Application init: called from the first created application task

*/
void appl_init(void)
{

//-- configure LED port pins
mPORTESetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2);
mPORTEClearBits(BIT_0 | BIT_1 | BIT_2);
//-- initialize various on-board peripherals, such as
// flash memory, displays, etc.
// (in this sample project there’s nothing to init)
//-- initialize various program modules
// (in this sample project there’s nothing to init)
//-- create all the rest application tasks
tn_task_create(

&task_b,
task_b_body,
TASK_B_PRIORITY,
task_b_stack,
TASK_B_STK_SIZE,
NULL,
(TN_TASK_CREATE_OPT_START)
);

tn_task_create(
&task_c,
task_c_body,

Generated by Doxygen

4.4 Round-robin scheduling 11

TASK_C_PRIORITY,
task_c_stack,
TASK_C_STK_SIZE,
NULL,
(TN_TASK_CREATE_OPT_START)
);

}
//-- idle callback that is called periodically from idle task
void idle_task_callback (void)
{
}
//-- create first application task(s)
void init_task_create(void)
{

//-- task A performs complete application initialization,
// it’s the first created application task
tn_task_create(

&task_a, //-- task structure
task_a_body, //-- task body function
TASK_A_PRIORITY, //-- task priority
task_a_stack, //-- task stack
TASK_A_STK_SIZE, //-- task stack size (in words)
NULL, //-- task function parameter
TN_TASK_CREATE_OPT_START //-- creation option
);

}
int32_t main(void)
{
#ifndef PIC32_STARTER_KIT

/*The JTAG is on by default on POR. A PIC32 Starter Kit uses the JTAG, but
for other debug tool use, like ICD 3 and Real ICE, the JTAG should be off
to free up the JTAG I/O */

DDPCONbits.JTAGEN = 0;
#endif

//-- unconditionally disable interrupts
tn_arch_int_dis();
//-- init hardware
hw_init();
//-- call to tn_sys_start() never returns
tn_sys_start(

idle_task_stack,
IDLE_TASK_STACK_SIZE,
interrupt_stack,
INTERRUPT_STACK_SIZE,
init_task_create,
idle_task_callback
);

//-- unreachable
return 1;

}
void __attribute__((naked, nomips16, noreturn)) _general_exception_handler(void)
{

PIC32_SOFTWARE_BREAK();
for (;;) ;

}

4.4 Round-robin scheduling

TNKernel has the ability to make round robin scheduling for tasks with identical priority. By default, round robin
scheduling is turned off for all priorities. To enable round robin scheduling for tasks on certain priority level and to
set time slices for these priority, user must call the tn_sys_tslice_set() function. The time slice value is the
same for all tasks with identical priority but may be different for each priority level. If the round robin scheduling is
enabled, every system time tick interrupt increments the currently running task time slice counter. When the time
slice interval is completed, the task is placed at the tail of the ready to run queue of its priority level (this queue
contains tasks in the RUNNABLE state) and the time slice counter is cleared. Then the task may be preempted by
tasks of higher or equal priority.

In most cases, there is no reason to enable round robin scheduling. For applications running multiple copies of the
same code, however, (GUI windows, etc), round robin scheduling is an acceptable solution.

Attention

Round-robin is not supported in Dynamic tick mode.

Generated by Doxygen

12 Quick guide

Generated by Doxygen

Chapter 5

Time ticks

The kernel needs to calculate timeouts. There are two schemes available: static tick and dynamic tick.

5.1 Static tick

Static tick is the easiest way to implement timeouts: there should be just some kind of hardware timer that generates
interrupts periodically. Throughout this text, this timer is referred to as system timer. The period of this timer
is determined by user (typically 1 ms, but user is free to set different value). In the ISR for this timer, it is only
necessary to call the tn_tick_int_processing() function:
//-- example for PIC32, hardware timer 5 interrupt:
tn_p32_soft_isr(_TIMER_5_VECTOR)
{

INTClearFlag(INT_T5);
tn_tick_int_processing();

}

But for some applications that spend a lot of time doing nothing this could be far from perfect: instead of being
constantly in the power-saving mode while there's nothing to do, the CPU needs to wake up regularly. So, dynamic
tick scheme was implemented:

5.2 Dynamic tick

The general idea is that there should be no useless calls to tn_tick_int_processing(). If the kernel
needs to wake up after 100 system ticks, then, tn_tick_int_processing() should be called exactly after
100 periods of system tick (but external asynchronous events still can happen and re-schedule that, of course).

To this end, the kernel should be able to communicate with the application:

• To schedule next call to tn_tick_int_processing() after N ticks;

• To ask what time is now (i.e. get current system ticks count)

To use dynamic tick, turn the option #TN_DYNAMIC_TICK to 1.

Then, a couple of callback prototypes becomes available:

• #TN_CBTickSchedule;

• #TN_CBTickCntGet.

And you must provide these callbacks to #tn_callback_dyn_tick_set() before starting the system (i.e.
before calling #tn_sys_start())

Attention

In dynamic tick mode, round-robin is not yet supported.

14 Time ticks

Generated by Doxygen

Chapter 6

Interrupts

6.1 Interrupt stack

TNeo provides a separate stack for interrupt handlers. This approach could save a lot of RAM: interrupt can happen
at any moment of time, and if there's no separate interrupt stack, then each task should have enough stack space
for the worse case of interrupt nesting.

Assume application's ISRs take max 64 words (64 ∗ 4 = 256 bytes on PIC32) and application has 4 tasks (plus one
idle task). Then, each of 5 tasks must have 64 words for interrupts: 64 ∗ 5 ∗ 4 = 1280 bytes of RAM just for 64
words for ISR.

With separate stack for interrupts, these 64 words should be allocated just once. Interrupt stack array should be
given to #tn_sys_start(). For additional information, refer to the section Starting the kernel.

The way a separate interrupt stack is implemented is architecture-specific, as well as the way to define an ISR:
some platforms require kernel-provided macro for that, some don't. Refer to the section for particular architecture:

• PIC32 interrupts,

• PIC24/dsPIC interrupts.

• Cortex-M interrupts.

6.2 Interrupt types

On some platforms (namely, on PIC24/dsPIC), there are two types of interrups: system interrupts and user inter-
rupts. Other platforms have system interrupts only. Kernel services are allowed to call only from system inter-
rupts, and interrupt-related kernel services (tn_arch_sr_save_int_dis(), tn_arch_sr_restore(),
_tn_arch_inside_isr(), etc) affect only system interrupts. Say, if _tn_arch_inside_isr() is
called from user interrupt, it returns 0.

Particular platform might have additional constraints for each of these interrupt types, refer to the details of each
supported platform for details.

16 Interrupts

Generated by Doxygen

Chapter 7

Building TNeo

Some notes on building the project.

Note: you don't have to build TNeo to use it. If you want to just use pre-built library (with default configuration), refer
to the section Using TNeo in your application.

7.1 Configuration file

TNeo is intended to be built as a library, separately from main project (although nothing prevents you from bundling
things together, if you want to).

There are various options available which affects API and behavior of the kernel. But these options are specific for
particular project, and aren't related to the kernel itself, so we need to keep them separately.

To this end, file tn.h (the main kernel header file) includes tn_cfg.h, which isn't included in the repository
(even more, it is added to .hgignore list actually). Instead, default configuration file tn_cfg_default.h is
provided, and when you just cloned the repository, you might want to copy it as tn_cfg.h. Or even better, if your
filesystem supports symbolic links, copy it somewhere to your main project's directory (so that you can add it to your
VCS there), and create symlink to it named tn_cfg.h in the TNeo source directory, like this:

$ cd /path/to/tneo/src
$ cp ./tn_cfg_default.h /path/to/main/project/lib_cfg/tn_cfg.h
$ ln -s /path/to/main/project/lib_cfg/tn_cfg.h ./tn_cfg.h

Default configuration file contains detailed comments, so you can read them and configure behavior as you like.

7.2 Makefile or library projects

If you need to build TNeo with some non-default configuration, the easiest way is to use ready-made Makefile or
library project.

18 Building TNeo

7.2.1 Makefile

It is tested only in Unix-like environment, so that you can't use makefile to build the kernel with Keil Realview or IAR.
For Keil Realview or IAR, use library project (see the section below).

There are two makefiles available: Makefile-all-arch and Makefile.

The first one is used to build all possible targets at once, so it is more for the kernel developer than for kernel user.
The second one is used to build the kernel for some particular architecture, and it takes two params: TN_ARCH
and TN_COMPILER.

Valid values for TN_ARCH are:

• cortex_m0 - for Cortex-M0 architecture,

• cortex_m0plus - for Cortex-M0+ architecture,

• cortex_m1 - for Cortex-M1 architecture,

• cortex_m3 - for Cortex-M3 architecture,

• cortex_m4 - for Cortex-M4 architecture,

• cortex_m4f - for Cortex-M4F architecture,

• pic32mx - for PIC32MX architecture,

• pic24_dspic_noeds - for PIC24/dsPIC architecture without EDS (Extended Data Space),

• pic24_dspic_eds - for PIC24/dsPIC architecture with EDS.

Valid values for TN_COMPILER depend on architecture. For Cortex-M series, they are:

• arm-none-eabi-gcc (you need GNU ARM Embedded toolchain)

• clang (you need LLVM clang)

For PIC32, just one value is valid:

• xc32 (you need Microchip XC32 compiler)

For PIC24/dsPIC, just one value is valid:

• xc16 (you need Microchip XC16 compiler)

Example invocation (from the TNeo's root directory) :

$ make TN_ARCH=cortex_m3 TN_COMPILER=arm-none-eabi-gcc

As a result, there will be archive library file bin/cortex_m3/arm-none-eabi-gcc/tneo_cortex_m3←↩

_arm-none-eabi-gcc.a

Generated by Doxygen

https://launchpad.net/~terry.guo/+archive/ubuntu/gcc-arm-embedded
http://clang.llvm.org/
http://www.microchip.com/xc32
http://www.microchip.com/xc16

7.3 Building manually 19

7.2.2 Library project

In the root of TNeo repository, there is a directory lib_project which contains ready-made projects for various
platforms. You may use it for building library, and then use resulting library file in your project.

For MPLABX projects, there are library projects, so that you even don't need to build a library: just add this library
project to your main project, and MPLABX will do all the work for you. You can change tn_cfg.h file "on-the-fly"
then. Other IDEs don't offer such a luxuries, so you need to build library file as a separate step.

7.3 Building manually

If you want to create library project yourself (say, in some different IDE, or anything), or if you want to build TNeo as
a direct part of your project, there are some generic requirements (there might be additional architecture-dependent
requirements, see links below):

• Core sources: add all .c files from src/core directory to the project.

• C99: TNeo uses some features of C99, such as static inline functions and variable declarations not
at the start of a compound statement. So, C99 is a requirement.

• C Include directories (relative to the root of the repository) :

– src

– src/core

– src/core/internal

– src/arch

• Assembler preprocessor Include directories (relative to the root of the repository) :

– src

– src/core

• .S files preprocessed by C preprocessor: This is probably more arch-dependent requirement than a
generic one, but actually .S files for all supported architectures need to be preprocessed, so it is specified
here. On most platforms, it works "out-of-the-box", on some others, you need to perform additional steps for
it: in these cases, necessary steps explained in the "building" section for the appropriate architecture, see
links below.

• Isolate each function in a section Not a requirement, but recommendation: for embedded designs, it is
usually a good idea to isolate each function in a section, so that in your application you can set linker option
like "remove unused sections", and save notable amount of flash memory.

For arch-dependent information on building TNeo, please refer to the appropriate section:

• Building for PIC24/dsPIC

• Building for PIC32

• Building for Cortex-M0/M1/M3/M4/M4F

Generated by Doxygen

20 Building TNeo

Generated by Doxygen

Chapter 8

Architecture-specific details

Architecture-specific details

8.1 PIC32 port details

8.1.1 Context switch

The context switch is implemented using the core software 0 interrupt (CS0), which is configured by the kernel to
the lowest priority (1). This interrupt is handled completely by the kernel, application should never touch it.

The interrupt priority level 1 should not be configured to use shadow register sets.

Multi-vectored interrupt mode should be enabled.

Attention

if tneo is built as a separate library (which is typically the case), then the file src/arch/pic32/tn_←↩

arch_pic32_int_vec1.S must be included in the main project itself, in order to dispatch vector1 (core
software interrupt 0) correctly. Do note that if we include this file in the TNeo library project, it doesn't work for
vector, unfortunately.

If you forgot to include this file, you got an error on the link step, like this:
undefined reference to ‘_you_should_add_file___tn_arch_pic32_int_vec1_S___to_the_project’

Which is much more informative than if you just get to _DefaultInterrupt when it's time to switch
context.

8.1.2 Interrupts

For generic information about interrupts in TNeo, refer to the page Interrupts.

PIC32 port has system interrupts only, there are no user interrupts.

PIC32 port supports nested interrupts. The kernel provides C-language macros for calling C-language interrupt
service routines, which can use either MIPS32 or MIPS16e mode. Both software and shadow register interrupt
context saving is supported. Usage is as follows:
/* Timer 1 interrupt handler using software interrupt context saving */
tn_p32_soft_isr(_TIMER_1_VECTOR)
{

/* here is your ISR code, including clearing of interrupt flag, and so on */

22 Architecture-specific details

}
/* High-priority UART interrupt handler using shadow register set */
tn_p32_srs_isr(_UART_1_VECTOR)
{

/* here is your ISR code, including clearing of interrupt flag, and so on */
}

In spite of the fact that the kernel provides separate stack for interrupt, this isn't a mandatory on PIC32: you're able
to define your ISR in a standard way, making it use stask of interrupted task and work a bit faster. Like this:
void __ISR(_TIMER_1_VECTOR) timer_1_isr(void)
{

/* here is your ISR code, including clearing of interrupt flag, and so on */
}

There is always a tradeoff. There are no additional constraints on ISR defined without kernel-provided macro: in
either ISR, you can call the same set of kernel services.

When you make a decision on whether particular ISR should use separate stack, consider the following:

• When ISR is defined in a standard way, and no function is called from that ISR, only necessary registers are
saved on stack. If you have such an ISR (that doesn't call any function), and this ISR should work very fast,
consider using standard way instead of kernel-provided macro.

• When ISR is defined in a standard way, but it calls any function and doesn't use shadow register set, compiler
saves (almost) full context on the task's stack, because it doesn't know which registers are used inside the
function. In this case, it usually makes more sense to use kernel-provided macro (see below).

• Kernel-provided interrupt macros switch stack pointer between interrupt stack and task stack automatically, it
takes additional time: e.g. on PIC32 it's about 20 cycles.

• Kernel-provided interrupt macro that doesn't use shadow register set always saves (almost) full context on
the interrupt stack, independently of whether any function is called from an ISR.

• Kernel-provided interrupt macro that uses shadow register set saves a little amount of registers on the inter-
rupt stack.

8.1.3 Building

For generic information on building TNeo, refer to the page Building TNeo.

MPLABX project for PIC32 port resides in the lib_project/pic32/tneo_pic32.X directory. This is a
library project in terms of MPLABX, so if you use MPLABX you can easily add it to your application project by right-
clicking Libraries -> Add Library Project Alternatively, of course you can just build it and use
resulting tneo_pic32.X.a file in whatever way you like.

If you want to build TNeo manually, refer to the section Building manually for generic notes about it, and there is a
couple of arch-dependent sources you need to add to the project:

• src/arch/pic32/tn_arch_pic32.c

• src/arch/pic32/tn_arch_pic32mx_xc32.S

Attention

There is one more file: tn_arch_pic32_int_vec1.S, which should be included in your application
project to make things work. It is needed to dispatch vector1 (Core Software Interrupt 0) correctly.

Generated by Doxygen

8.2 PIC24/dsPIC port details 23

8.2 PIC24/dsPIC port details

8.2.1 Context switch

The context switch is implemented using the external interrupt 0 (INT0). It is handled completely by the kernel,
application should never touch it.

8.2.2 Interrupts

For generic information about interrupts in TNeo, refer to the page Interrupts.

PIC24/dsPIC TNeo port supports nested interrupts. It allows to specify the range of system interrupt priorities. Refer
to the subsection Interrupt types for details on what is system interrupt.

System interrupts use separate interrupt stack instead of the task's stack. This approach saves a lot of RAM.

The range is specified by just a single number: #TN_P24_SYS_IPL, which represents maximum system interrupt
priority. Here is a list of available priorities and their characteristics:

• priorities [1 .. #TN_P24_SYS_IPL]:

– Kernel services are allowed to call;

– The macro tn_p24_soft_isr() must be used.

– Separate interrupt stack is used by ISR;

– Interrupts of these priorities get disabled for short periods of time when modifying critical kernel data
(for about 100 cycles or the like).

• priorities [(#TN_P24_SYS_IPL + 1) .. 6]:

– Kernel services are not allowed to call;

– The macro tn_p24_soft_isr() must not be used.

– Task's stack is used by ISR;

– Interrupts of these priorities are not disabled when modifying critical kernel data, but they are disabled
for 4..8 cycles by disi instruction when entering/exiting system ISR: we need to safely modify SP and
SPLIM.

• priority 7:

– Kernel services are not allowed to call;

– The macro tn_p24_soft_isr() must not be used.

– Task's stack is used by ISR;

– Interrupts of these priorities are never disabled by the kernel (note that disi instruction leaves inter-
rupts of priority 7 enabled).

The kernel provides C-language macro for calling C-language system interrupt service routines.

Usage is as follows:
/*
* Timer 1 interrupt handler using software interrupt context saving,

* PSV is handled automatically:

*/
tn_p24_soft_isr(_T1Interrupt, auto_psv)
{

//-- clear interrupt flag
IFS0bits.T1IF = 0;
//-- do something useful

}

Attention

do not use this macro for non-system interrupt (that is, for interrupt of priority higher than #TN_P24_SYS←↩

_IPL). Use standard way to define it. If #TN_CHECK_PARAM is on, kernel checks it: if you violate this rule,
debugger will be halted by the kernel when entering ISR. In release build, CPU is just reset.

Generated by Doxygen

24 Architecture-specific details

8.2.3 Atomic access to the structure bit field

The problem with PIC24/dsPIC is that when we write something like:
IPC0bits.INT0IP = 0x05;

We actually have read-modify-write sequence which can be interrupted, so that resulting data could be corrupted.
PIC24/dsPIC port provides several macros that offer atomic access to the structure bit field.

The kernel would not probably provide that kind of functionality, but TNeo itself needs it, so, it is made public so that
application can use it too.

Refer to the page Atomic bit-field access macros for details.

8.2.4 Building

For generic information on building TNeo, refer to the page Building TNeo.

MPLABX project for PIC24/dsPIC port resides in the lib_project/pic24_dspic/tneo_pic24_←↩

dspic.X directory. This is a library project in terms of MPLABX, so if you use MPLABX you can easily add it to
your main project by right-clicking Libraries -> Add Library Project

Alternatively, of course you can just build it and use resulting .a file in whatever way you like.

Attention

there are two configurations of this project: eds and no_eds, for devices with and without extended data space,
respectively. When you add library project to your application project, you should select correct configuration
for your device; otherwise, you get "undefined reference" errors at linker step.

If you want to build TNeo manually, refer to the section Building manually for generic notes about it, and additionally
you should add arch-dependent sources: all .c and .S files from src/arch/pic24_dspic

8.3 Cortex-M0/M0+/M3/M4/M4F port details

8.3.1 Context switch

The context switch is implemented in a standard for Cortex-M CPUs way: the PendSV exception. SVC exception is
used for _tn_arch_context_switch_now_nosave(). These two exceptions are configured by the kernel
to the lowest priority.

8.3.2 Interrupts

For generic information about interrupts in TNeo, refer to the page Interrupts.

Cortex-M port has system interrupts only, there are no user interrupts.

Interrupts use separate interrupt stack, i.e. MSP (Main Stack Pointer). Tasks use PSP (Process Stack Pointer).

There are no constraints on ISRs: no special macros for ISR definition, or whatever. This is because Cortex-
M processors are designed with OS applications in mind, so a number of featureas are available to make OS
implementation easier and make OS operations more efficient.

Generated by Doxygen

8.3 Cortex-M0/M0+/M3/M4/M4F port details 25

8.3.3 Building

For generic information on building TNeo, refer to the page Building TNeo.

There are many environments for building for Cortex-M CPUs (Keil, Eclipse, CooCox), all available projects reside
in lib_project/cortex_m directory. They usually are pretty enough if you want to just build the kernel with
non-default configuration.

If, however, you want to build it not using provided project, refer to the section Building manually for generic notes
about it, and additionally you should add arch-dependent sources: all .c and .S files from src/arch/cortex←↩

_m.

There are some additional tips depending on the build environment:

Keil 5, ARMCC compiler

To satisfy building requirements, a couple of actions needed:

• C99 is off by default. In project options, C/C++ tab, check "C99 Mode" checkbox.

• Assembler files (.S) aren't preprocessed by default, so, in project options, Asm tab, "Misc Controls" field,
type the following: --cpreproc

Keil 5, GCC compiler

Unfortunately, when GCC toolchain is used from Keil uVision IDE, for .S files it calls arm-none-eabi-as, which
does not call C preprocessor.

Instead, arm-none-eabi-gcc should be used, but unfortunately I was unable to make Keil uVision issue
arm-none-eabi-gcc for .S files, the only way to use GCC toolchain in Keil uVision that I'm aware of is to
preprocess the file manually, like that:

cpp -P -undef tn_arch_cortex_m.S \
-D __GNUC__ -D __ARM_ARCH -D __ARM_ARCH_7M__ \
-I ../.. -I ../../core \
> tn_arch_cortex_m3_gcc.s

(this example is for Cortex-M3, you may check the file tn_arch_detect.h to see what should you define instead
of __ARM_ARCH_7M__ for other cores)

And then, add the output file tn_arch_cortex_m3_gcc.s to the project instead of tn_arch_cortex_←↩

m.S

Generated by Doxygen

26 Architecture-specific details

Generated by Doxygen

Chapter 9

Why reimplement TNKernel

Explanation of essential TNKernel problems as well as several examples of poor implementation.

9.1 Essential problems of TNKernel

• The most essential problem is that TNKernel is a very hastily-written project. Several concepts are just poorly
thought out, others are poorly implemented: there is a lot of code duplication and inconsistency;

• It is untested: there are no unit tests for the kernel, this is not acceptable for the project like real-time kernel;

As a result of the two above, the kernel is buggy. And even more, the kernel is really hard to maintain because of
inconsistency, so when we add new features or change something, we are likely to add new bugs as well.

• It is unsupported. I've written to the Yuri Tiomkin about troubles with MAKE_ALIG() macro as well as about
bugs in the kernel, my messages were just ignored;

• People are unable to contribute to the kernel. There is even no some kind of main repository: there's just an
archive with source code published on the website. When someone wants to contribute, he or she has no way
to do this but to write to Yuri, but, as I've already mentioned, messages like this are ignored. So, eventually
people end up maintaining their own modification of TNKernel. Rest assured this will never happen with
TNeo: even if some day I completely stop maintaining the kernel, I'll transfer ownership of the repository to
someone who is interested in maintaining it.

• Documentation is far from perfect and it lives separately of the project itself: latest kernel version at the
moment is 2.7 (published at 2013), but latest documentation is for 2.3 (published at 2006).

9.2 Examples of poor implementation

9.2.1 One entry point, one exit point

The most common example that happens across all TNKernel sources is code like the following:
int my_function(void)
{

tn_disable_interrupt();
//-- do something
if (error()){

//-- do something
tn_enable_interrupt();

28 Why reimplement TNKernel

return ERROR;
}
//-- do something
tn_enable_interrupt();
return SUCCESS;

}

If you have multiple return statements or, even more, if you have to perform some action before return
(tn_enable_interrupt() in the example above), it's great job for goto:
int my_function(void)
{

int rc = SUCCESS;
tn_disable_interrupt();
//-- do something
if (error()){

//-- do something
rc = ERROR;
goto out;

}
//-- do something

out:
tn_enable_interrupt();
return rc;

}

I understand there are a lot of people that don't agree with me on this (mostly because they religiously believe that
goto is unconditionally evil), but anyway I decided to explain it. And, let's go further:

While multiple goto-s to single label are better than multiple return statements, it becomes less useful as we get
to something more complicated. Imagine we need to perform some checks before disabling interrupts, and perform
some other checks after disabling them. Then, we have to create two labels, like that:
int my_function(void)
{

int rc = SUCCESS;
if (error1()){

rc = ERROR1;
goto out;

}
tn_disable_interrupt();
if (error2()){

rc = ERROR2;
goto out_ei;

}
if (error3()){

rc = ERROR3;
goto out_ei;

}
//-- perform job

out_ei:
tn_enable_interrupt();

out:
return rc;

}

For each error handling, we should specify the label explicitly, and it's easy to mix labels up, especially if we add
some new case to check in the future. So, I believe this approach is a superior:
int my_function(void)
{

int rc = SUCCESS;
if (error1()){

rc = ERROR1;
} else {

tn_disable_interrupt();
if (error2()){

rc = ERROR2;
} else if (error3()){

rc = ERROR3;
} else {

//-- perform job
}
tn_enable_interrupt();

}
return rc;

}

Then, for each new error handling, we should just add new else if block, and there's no need to care where to
go if error happened. Let the compiler do the branching job for you. More, this code looks more compact.

Generated by Doxygen

9.2 Examples of poor implementation 29

Needless to say, I already found such bug in original TNKernel 2.7 code. The function tn_sys_tslice_ticks()
looks as follows:
int tn_sys_tslice_ticks(int priority,int value)
{

TN_INTSAVE_DATA
TN_CHECK_NON_INT_CONTEXT
tn_disable_interrupt();
if(priority <= 0 || priority >= TN_NUM_PRIORITY-1 ||

value < 0 || value > MAX_TIME_SLICE)
return TERR_WRONG_PARAM;

tn_tslice_ticks[priority] = value;
tn_enable_interrupt();
return TERR_NO_ERR;

}

If you look closely, you can see that if wrong params were given, #TERR_WRONG_PARAM is returned, and in-
terrupts remain disabled. If we follow the one entry point, one exit point rule, this bug is much less likely to
happen.

9.2.2 Don't repeat yourself

Original TNKernel 2.7 code has a lot of code duplication. So many similar things are done in several places just by
copy-pasting the code.

• If we have similar functions (like, tn_queue_send(), tn_queue_send_polling() and
tn_queue_isend_polling()), the implementation is just copy-pasted, there's no effort to gener-
alize things.

• Mutexes have complicated algorithms for task priorities. It is implemented in inconsistent, messy manner,
which leads to bugs (refer to Bugs of TNKernel 2.7)

• Transitions between task states are done, again, in inconsistent copy-pasting manner. When we need to move
task from, say, RUNNABLE state to the WAIT state, it's not enough to just clear one flag and set another one:
we also need to remove it from whatever run queue the task is contained, probably find next task to run, then
set reason of waiting, probably add to wait queue, set up timeout if specified, etc. In original TNKernel 2.7,
there's no general mechanism to do this.

Meanwhile, the correct way is to create three functions for each state:

– to set the state;

– to clear the state;

– to test if the state active.

And then, when we need to move task from one state to another, we typically should just call two functions:
one for clearing current state, and one for settine a new one. It is consistent, and of course this approach is
used in TNeo.

As a result of the violation of the rule Don't repeat yourself, when we need to change something, we need to change
it in several places. Needless to say, it is very error-prone practice, and of course there are bugs in original TNKernel
because of that (refer to Bugs of TNKernel 2.7).

9.2.3 Macros that return from function

TNKernel uses architecture-depended macros like TN_CHECK_NON_INT_CONTEXT. This macro checks the cur-
rent context (task or ISR), and if it is ISR, it returns TERR_WRONG_PARAM.

It isn't obvious to the reader of the code, but things like returning from function must be as obvious as possible.

It is better to invent some function that tests current context, and return the value explicitly:

Generated by Doxygen

30 Why reimplement TNKernel

enum TN_RCode my_function(void)
enum TN_RCode rc = TN_RC_OK;
// ...
if (!tn_is_task_context()){

rc = TN_RC_WCONTEXT;
goto out;

}
// ...

out:
return rc

}

9.2.4 Code for doubly-linked lists

TNKernel uses doubly-linked lists heavily, which is very good. I must admit that I really like the way data is organized
in TNKernel. But, unfortunately, code that manages data is far from perfect, as I already mentioned.

So, let's get to the lists. I won't paste all the macros here, just make some overview. If we have a list, it's very
common task to iterate through it. Typical snippet in TNKernel looks like this:
CDLL_QUEUE * curr_que;
TN_MUTEX * tmp_mutex;
curr_que = tn_curr_run_task->mutex_queue.next;
while(curr_que != &(tn_curr_run_task->mutex_queue))
{

tmp_mutex = get_mutex_by_mutex_queque(curr_que);
/* now, tmp_mutex points to the next object, so,

we can do something useful with it */
curr_que = curr_que->next;

}

This code is neither easy to read nor elegant. It's much better to use special macro for that (actually, similar macros
are used across the whole Linux kernel code) :
TN_MUTEX * tmp_mutex;
tn_list_for_each_entry(tmp_mutex, &(tn_curr_run_task->mutex_queue), mutex_queue){

/* now, tmp_mutex points to the next object, so,
we can do something useful with it */

}

Much shorter and intuitive, isn't it? We even don't have to keep special curr_que.

9.3 Bugs of TNKernel 2.7

TNKernel 2.7 has several bugs, which are caught by detailed unit tests and fixed.

• We have two tasks: low-priority one task_low and high-priority one task_high. They use mutex M1
with priority inheritance.

– task_low locks M1

– task_high tries to lock mutex M1 and gets blocked -> priority of task_low elevates to the priority
of task_high

– task_high stops waiting for mutex by timeout -> priority of task_low remains elevated. The same
happens if task_high is terminated by tn_task_terminate().

• We have three tasks: two low-priority tasks task_low1 and task_low2, and high-priority one task_←↩

high. They use mutex M1 with priority inheritance.

– task_low1 locks M1

– task_low2 tries to lock M1 and gets blocked

– task_high tries to lock M1 and gets blocked -> priority if task_low1 is elevated

– task_low1 unlocks M1 ->

* priority of task_low1 returns to base value

Generated by Doxygen

9.3 Bugs of TNKernel 2.7 31

* task_low2 locks M1 because it's the next task in the mutex queue

* now, priority of task_low2 should be elevated, but it doesn't happen. Priority inversion is in
effect.

• tn_mutex_delete() : if mutex is not locked, #TERR_ILUSE is returned. Of course, task should be
able to delete non-locked mutex;

• If task that waits for mutex is in WAIT+SUSPEND state, and mutex is deleted, #TERR_NO_ERR is returned
after returning from SUSPEND state, instead of #TERR_DLT. The same for queue deletion, semaphore
deletion, event deletion.

• tn_sys_tslice_ticks() : if wrong params are given, #TERR_WRONG_PARAM is returned and inter-
rupts remain disabled.

• tn_queue_receive() and tn_fmem_get() : if timeout is in effect, then #TN_RC_TIMEOUT is
returned, but user-provided pointer is altered anyway (some garbage data is written there)

• Probably not a "bug", but an issue in the data queue: actual capacity of the buffer is less by 1 than user has
specified and allocated

• Event: if TN_EVENT_ATTR_CLR flag is set, and the task that is waiting for event is suspended, this flag
TN_EVENT_ATTR_CLR is ignored (pattern is not reset). I can't say this bug is "fixed" because TNeo has
event groups instead of events, and there is no TN_EVENT_ATTR_CLR flag.

Bugs with mutexes are the direct result of the inconsistency and copy-pasting the code, as well as lack of unit tests.

Generated by Doxygen

32 Why reimplement TNKernel

Generated by Doxygen

Chapter 10

Differences from TNKernel API

If you have experience of using TNKernel, you really want to read this.

10.1 Incompatible API changes

10.1.1 System startup

Original TNKernel code designed to be built together with main project only, there's no way to build as a separate
library: at least, arrays for idle and timer task stacks are allocated statically, so size of them is defined at tnkernel
compile time.

It's much better if we could pass these things to tnkernel at runtime, so, tn_sys_start() now takes pointers to
stack arrays and their sizes. Refer to Starting the kernel section for the details.

10.1.2 Task creation API

In original TNKernel, one should give bottom address of the task stack to tn_task_create(), like this:
#define MY_STACK_SIZE 0x100
static unsigned int my_stack[MY_STACK_SIZE];
tn_task_create(/* ... several arguments omitted ... */

&(my_stack[MY_STACK_SIZE - 1]),
/* ... several arguments omitted ... */);

Alex Borisov implemented it more conveniently in his port: one should give just array address, like this:
tn_task_create(/* ... several arguments omitted ... */

my_stack,
/* ... several arguments omitted ... */);

TNeo uses the second way (i.e. the way used in the port by Alex Borisov), and it does so independently of the
architecture being used.

34 Differences from TNKernel API

10.1.3 Task wakeup count, activate count, suspend count

In original TNKernel, requesting non-sleeping task to wake up is quite legal and causes next call to
tn_task_sleep() to not sleep. The same is with suspending/resuming tasks.

So, if you call tn_task_wakeup() on non-sleeping task first time, #TERR_NO_ERR is returned. If you call it
second time, before target task called tn_task_sleep(), #TERR_OVERFLOW is returned.

All of this seems to me as a complete dirty hack, it probably might be used as a workaround to avoid race condition
problems, or as a hacky replacement for semaphore.

It just encourages programmer to go with hacky approach, instead of creating straightforward semaphore and
provide proper synchronization.

In TNeo these "features" are removed, and if you try to wake up non-sleeping task, or try to resume non-suspended
task, #TN_RC_WSTATE is returned.

By the way, suspend_count is present in TCB structure, but is never used, so, it is just removed. And comments
for wakeup_count, activate_count, suspend_count suggested that these fields are used for statistics,
which is clearly not true.

10.1.4 Fixed memory pool: non-aligned address or block size

In original TNKernel it's illegal to pass block_size that is less than sizeof(int). But, it is legal to pass
some value that isn't multiple of sizeof(int): in this case, block_size is silently rounded up, and therefore
block_cnt is silently decremented to fit as many blocks of newly calculated block_size as possible. If
resulting block_cnt is at least 2, it is assumed that everything is fine and we can go on.

Why I don't like it: firstly, silent behavior like this is generally bad practice that leads to hard-to-catch bugs. Secondly,
it is inconsistency again: why is it legal for block_size not to be multiple of sizeof(int), but it is illegal for it
to be less than sizeof(int)? After all, the latter is the partucular case of the former.

So, TNeo returns #TN_RC_WPARAM in these cases. User must provide start_addr and block_size that
are properly aligned.

TNeo also provides convenience macro TN_FMEM_BUF_DEF() for buffer definition, so, as a generic rule, it is
good practice to define buffers for memory pool like this:
//-- number of blocks in the pool
#define MY_MEMORY_BUF_SIZE 8
//-- type for memory block
struct MyMemoryItem {

// ... arbitrary fields ...
};
//-- define buffer for memory pool
TN_FMEM_BUF_DEF(my_fmem_buf, struct MyMemoryItem, MY_MEMORY_BUF_SIZE);
//-- define memory pool structure
struct TN_FMem my_fmem;

And then, construct your my_fmem as follows:
enum TN_RCode rc;
rc = tn_fmem_create(&my_fmem,

my_fmem_buf,
TN_MAKE_ALIG_SIZE(sizeof(struct MyMemoryItem)),
MY_MEMORY_BUF_SIZE);

if (rc != TN_RC_OK){
//-- handle error

}

Generated by Doxygen

10.1 Incompatible API changes 35

10.1.5 Task service return values cleaned

In original TNKernel, #TERR_WCONTEXT is returned in the following cases:

• call to tn_task_terminate() for already terminated task;

• call to tn_task_delete() for non-terminated task;

• call to tn_task_change_priority() for terminated task;

• call to tn_task_wakeup()/tn_task_iwakeup() for terminated task;

• call to tn_task_release_wait()/tn_task_irelease_wait() for terminated task.

The actual error is, of course, wrong state, not wrong context; so, TNeo returns #TN_RC_WSTATE in these cases.

10.1.6 Force task releasing from wait

In original TNKernel, a call to tn_task_release_wait() / tn_task_irelease_wait() causes waiting
task to wake up, regardless of wait reason, and #TERR_NO_ERR is returned as a wait result. Actually I believe it
is bad idea to ever use tn_task_release_wait(), but if we have this service, error code surely should be
distinguishable from normal wait completion, so, new code is added: #TN_RC_FORCED, and it is returned when
task wakes up because of tn_task_release_wait() call.

10.1.7 Return code of tn_task_sleep()

In original TNKernel, tn_task_sleep() always returns #TERR_NO_ERR, independently of what actually hap-
pened. In TNeo, there are three possible return codes:

• #TN_RC_TIMEOUT if timeout is actually in effect;

• #TN_RC_OK if task was woken up by some other task with tn_task_wakeup();

• #TN_RC_FORCED if task was woken up forcibly by some other task with tn_task_release_wait();

10.1.8 Events API is changed almost completely

Note: for old TNKernel projects, there is a compatibility mode, see #TN_OLD_EVENT_API.

In original TNKernel, I always found events API somewhat confusing. Why is this object named "event", but there
are many flags inside, so that they can actually represent many events?

Meanwhile, attributes like TN_EVENT_ATTR_SINGLE, TN_EVENT_ATTR_CLR imply that "event" object is re-
ally just a single event, since it makes no sense to clear just all event bits when some particular event happened.

After all, when we call tn_event_clear(&my_event_obj, flags), we might expect that flags argu-
ment actually specifies flags to clear. But in fact, we must invert it, to make it work: ∼flags. This is really
confusing.

In TNeo, there is no such event object. Instead, there is object events group. Attributes like ...SINGLE, ...M←↩

ULTI, ...CLR are removed, since they make no sense for events group. Instead, you may set the flag #TN_E←↩

VENTGRP_WMODE_AUTOCLR when task is going to wait for some event bit(s), and then these event bit(s) will be
atomically cleared automatically when task successfully finishes waiting for these bits.

TNeo also offers a very useful feature: connecting an event group to other kernel objects. Refer to the section
Connecting an event group to other system objects.

For detailed API reference, refer to the tn_eventgrp.h.

Generated by Doxygen

36 Differences from TNKernel API

10.1.9 Zero timeout given to system functions

In original TNKernel, system functions refused to perform job and returned #TERR_WRONG_PARAM if timeout is
0, but it is actually neither convenient nor intuitive: it is much better if the function behaves just like ...polling()
version of the function. All TNeo system functions allows timeout to be zero: in this case, function doesn't wait.

10.2 New features

Well, I'm tired of maintaining this additional list of features, so I just say that there is a lot of new features: timers,
event group connection, stack overflow check, recursive mutexes, mutex deadlock detection, profiler, dynamic tick,
etc.

Refer to the generic feature list.

10.3 Compatible API changes

10.3.1 Macro MAKE_ALIG()

There is a terrible mess with MAKE_ALIG() macro: TNKernel docs specify that the argument of it should be the
size to align, but almost all ports, including original one, defined it so that it takes type, not size.

But the port by AlexB implemented it differently (i.e. accordingly to the docs) : it takes size as an argument.

When I was moving from the port by AlexB to another one, do you have any idea how much time it took me to figure
out why do I have rare weird bug? :)

By the way, additional strange thing: why doesn't this macro have any prefix like TN_?

TNeo provides macro TN_MAKE_ALIG_SIZE() whose argument is size, so, its usage is as follows←↩

: TN_MAKE_ALIG_SIZE(sizeof(struct MyStruct)). This macro is preferred.

But for compatibility with messy MAKE_ALIG() from original TNKernel, there is an option #TN_API_MAKE_A←↩

LIG_ARG with two possible values;

• #TN_API_MAKE_ALIG_ARG__SIZE - default value, use macro like this: MAKE_ALIG(sizeof(struct my_struct)),
like in the port by Alex.

• #TN_API_MAKE_ALIG_ARG__TYPE - use macro like this: MAKE_ALIG(struct my_struct), like
in any other port.

By the way, I wrote to the author of TNKernel (Yuri Tiomkin) about this mess, but he didn't answer anything. It's a
pity of course, but we have what we have.

10.3.2 Convenience macros for stack arrays definition

You can still use "manual" definition of stack arrays, like that:
TN_ARCH_STK_ATTR_BEFORE
TN_UWord my_task_stack[MY_TASK_STACK_SIZE]
TN_ARCH_STK_ATTR_AFTER;

Although it is recommended to use convenience macro for that: TN_STACK_ARR_DEF(). See tn_task_create()
for the usage example.

Generated by Doxygen

10.4 Changes that do not affect API directly 37

10.3.3 Convenience macros for fixed memory block pool buffers definition

Similarly to the previous section, you can still use "manual" definition of the buffer for fixed memory block pool, it
is recommended to use convenience macro for that: TN_FMEM_BUF_DEF(). See tn_fmem_create() for
usage example.

10.3.4 Things renamed

There is a lot of inconsistency with naming stuff in original TNKernel:

• Why do we have tn_queue_send_polling() / tn_queue_isend_polling() (notice the i letter
before the verb, not before polling), but tn_fmem_get_polling() / tn_fmem_get_ipolling()
(notice the i letter before polling)?

• All the system service names follow the naming scheme tn_<noun>_<verb>[_<adjustment>](),
but the tn_start_system() is special, for some strange reason. To make it consistent, it should be
named tn_system_start() or tn_sys_start();

• A lot of macros don't have TN_ prefix;

• etc

So, a lot of things (functions, macros, etc) has renamed. Old names are also available through
tn_oldsymbols.h, which is included automatically if #TN_OLD_TNKERNEL_NAMES option is non-zero.

10.3.5 We should wait for semaphore, not acquire it

One of the renamings deserves special mentioning: tn_sem_acquire() and friends are renamed to
tn_sem_wait() and friends. That's because names acquire/release are actually misleading for the
semaphore: semaphore is a signaling mechanism, and not the locking mechanism.

Actually, there's a lot of confusion about usage of mutexes/semaphores, so it's quite recommended to read small
article by Michael Barr: Mutexes and Semaphores Demystified.

Old names (tn_sem_acquire() and friends) are still available through tn_oldsymbols.h.

10.4 Changes that do not affect API directly

10.4.1 No timer task

Yes, timer task's job is important: it manages tn_wait_timeout_list, i.e. it wakes up tasks whose timeout
is expired. But it's actually better to do it right in tn_tick_int_processing() that is called from timer ISR,
because presence of the special task provides significant overhead. Look at what happens when timer interrupt is
fired (assume we don't use shadow register set for that, which is almost always the case):

(measurements were made at PIC32 port)

• Current context (23 words) is saved to the interrupt stack;

• ISR called: particularly, tn_tick_int_processing() is called;

Generated by Doxygen

http://goo.gl/YprPBW

38 Differences from TNKernel API

• tn_tick_int_processing() disables interrupts, manages round-robin (if needed), then it wakes up
tn_timer_task, sets tn_next_task_to_run, and enables interrupts back;

• tn_tick_int_processing() finishes, so ISR macro checks that tn_next_task_to_run is dif-
ferent from tn_curr_run_task, and sets CS0 interrupt bit, so that context should be switched as soon
as possible;

• Context (23 words) gets restored to whatever task we interrupted;

• CS0 ISR is immediately called, so full context (32 words) gets saved on task's stack, and context of tn_←↩

timer_task is restored;

• tn_timer_task disables interrupts, performs its not so big job (manages tn_wait_timeout_list),
puts itself to wait, enables interrupts and pends context switching again;

• CS0 ISR is immediately called, so full context of tn_timer_task gets saved in its stack, and then, after
all, context of my own interrupted task gets restored and my task continues to run.

I've measured with MPLABX's stopwatch how much time it takes: with just three tasks (idle task, timer task, my
own task with priority 6), i.e. without any sleeping tasks, all this routine takes 682 cycles. So I tried to get rid of
tn_timer_task and perform its job right in the tn_tick_int_processing().

Previously, application callback was called from timer task; since it is removed now, startup routine has changed,
refer to Starting the kernel for details.

Now, the following steps are performed when timer interrupt is fired:

• Current context (23 words) is saved to the interrupt stack;

• ISR called: particularly, tn_tick_int_processing() is called;

• tn_tick_int_processing() disables interrupts, manages round-robin (if needed), manages tn_←↩

wait_timeout_list, and enables interrupts back;

• tn_tick_int_processing() finishes, ISR macro checks that tn_next_task_to_run is the
same as tn_curr_run_task

• Context (23 words) gets restored to whatever task we interrupted;

That's all. It takes 251 cycles: 2.7 times less.

So, we need to make sure that interrupt stack size is enough for this (not big) job. As a result, RAM is saved (since
you don't need to allocate stack for timer task) and things work much faster. Win-win.

Generated by Doxygen

Chapter 11

Unit tests

Brief information on the implementation of unit tests

11.1 Tested CPUs

Currently, unit tests project is tested in the hardware on the following CPUs:

• PIC32MX440F512H

• PIC24FJ256GB106

11.2 How tests are implemented

Briefly: there is a high-priority task like "test director", which creates worker tasks as well as various kernel objects
(queues, mutexes, etc), and then orders to workers, like:

• Task A, you lock the mutex M1

• Task B, you lock the mutex M1

• Task C, you lock the mutex M1

• Task A, you delete the mutex M1

After each step it waits for workers to complete their job, and then checks if things are as expected: task states, task
priorities, last return values of services, various properties of objects, etc.

Detailed log is written to the UART. Typically, for each step, the following is written:

• verbatim comment is written,

• director writes what does it do,

• each worker writes what does it do,

• director checks things and writes detailed report.

40 Unit tests

Of course there is a mechanism for writing such scenarios. Here is a part of code that specifies the sequence with
locking and deleting mutex explained above:
TNT_TEST_COMMENT("A locks M1");
TNT_ITEM__SEND_CMD_MUTEX(TNT_TASK__A, MUTEX_LOCK, TNT_MUTEX__1);
TNT_ITEM__WAIT_AND_CHECK_DIFF(

TNT_CHECK__MUTEX(TNT_MUTEX__1, HOLDER, TNT_TASK__A);
TNT_CHECK__MUTEX(TNT_MUTEX__1, LOCK_CNT, 1);
TNT_CHECK__TASK(TNT_TASK__A, LAST_RETVAL, TN_RC_OK);
);

TNT_TEST_COMMENT("B tries to lock M1 -> B blocks, A has priority of B");
TNT_ITEM__SEND_CMD_MUTEX(TNT_TASK__B, MUTEX_LOCK, TNT_MUTEX__1);
TNT_ITEM__WAIT_AND_CHECK_DIFF(

TNT_CHECK__TASK(TNT_TASK__B, LAST_RETVAL, TWORKER_MAN__LAST_RETVAL__UNKNOWN);
TNT_CHECK__TASK(TNT_TASK__B, WAIT_REASON, TSK_WAIT_REASON_MUTEX_I);
TNT_CHECK__TASK(TNT_TASK__A, PRIORITY, priority_task_b);
);

TNT_TEST_COMMENT("C tries to lock M1 -> C blocks, A has priority of C");
TNT_ITEM__SEND_CMD_MUTEX(TNT_TASK__C, MUTEX_LOCK, TNT_MUTEX__1);
TNT_ITEM__WAIT_AND_CHECK_DIFF(

TNT_CHECK__TASK(TNT_TASK__C, LAST_RETVAL, TWORKER_MAN__LAST_RETVAL__UNKNOWN);
TNT_CHECK__TASK(TNT_TASK__C, WAIT_REASON, TSK_WAIT_REASON_MUTEX_I);
TNT_CHECK__TASK(TNT_TASK__A, PRIORITY, priority_task_c);
);

TNT_TEST_COMMENT("A deleted M1 -> B and C become runnable and have retval TN_RC_DELETED, A has its base
priority");

TNT_ITEM__SEND_CMD_MUTEX(TNT_TASK__A, MUTEX_DELETE, TNT_MUTEX__1);
TNT_ITEM__WAIT_AND_CHECK_DIFF(

TNT_CHECK__TASK(TNT_TASK__B, LAST_RETVAL, TN_RC_DELETED);
TNT_CHECK__TASK(TNT_TASK__C, LAST_RETVAL, TN_RC_DELETED);
TNT_CHECK__TASK(TNT_TASK__B, WAIT_REASON, TSK_WAIT_REASON_DQUE_WRECEIVE);
TNT_CHECK__TASK(TNT_TASK__C, WAIT_REASON, TSK_WAIT_REASON_DQUE_WRECEIVE);
TNT_CHECK__TASK(TNT_TASK__A, PRIORITY, priority_task_a);
TNT_CHECK__MUTEX(TNT_MUTEX__1, HOLDER, TNT_TASK__NONE);
TNT_CHECK__MUTEX(TNT_MUTEX__1, LOCK_CNT, 0);
TNT_CHECK__MUTEX(TNT_MUTEX__1, EXISTS, 0);
);

And here is the appropriate part of log that is echoed to the UART:
//-- A locks M1 (line 404 in ../source/appl/appl_tntest/appl_tntest_mutex.c)
[I]: tnt_item_proceed():2101: ----- Command to task A: lock mutex M1 (0xa0004c40)
[I]: tnt_item_proceed():2160: Wait 80 ticks
[I]: [Task A]: locking mutex (0xa0004c40)..
[I]: [Task A]: mutex (0xa0004c40) locked
[I]: [Task A]: waiting for command..
[I]: tnt_item_proceed():2178: Checking:
[I]: * Task A: priority=6 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=TN_RC_OK (as

expected)
[I]: * Task B: priority=5 (as expected), wait_reason=DQUE_WRECEIVE (as expected),

last_retval=NOT-YET-RECEIVED (as expected)
[I]: * Task C: priority=4 (as expected), wait_reason=DQUE_WRECEIVE (as expected),

last_retval=NOT-YET-RECEIVED (as expected)
[I]: * Mutex M1: holder=A (as expected), lock_cnt=1 (as expected), exists=yes (as expected)
//-- B tries to lock M1 -> B blocks, A has priority of B (line 413 in

../source/appl/appl_tntest/appl_tntest_mutex.c)
[I]: tnt_item_proceed():2101: ----- Command to task B: lock mutex M1 (0xa0004c40)
[I]: tnt_item_proceed():2160: Wait 80 ticks
[I]: [Task B]: locking mutex (0xa0004c40)..
[I]: tnt_item_proceed():2178: Checking:
[I]: * Task A: priority=5 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=TN_RC_OK (as

expected)
[I]: * Task B: priority=5 (as expected), wait_reason=MUTEX_I (as expected), last_retval=NOT-YET-RECEIVED (as

expected)
[I]: * Task C: priority=4 (as expected), wait_reason=DQUE_WRECEIVE (as expected),

last_retval=NOT-YET-RECEIVED (as expected)
[I]: * Mutex M1: holder=A (as expected), lock_cnt=1 (as expected), exists=yes (as expected)
//-- C tries to lock M1 -> B blocks, A has priority of C (line 422 in

../source/appl/appl_tntest/appl_tntest_mutex.c)
[I]: tnt_item_proceed():2101: ----- Command to task C: lock mutex M1 (0xa0004c40)
[I]: tnt_item_proceed():2160: Wait 80 ticks
[I]: [Task C]: locking mutex (0xa0004c40)..
[I]: tnt_item_proceed():2178: Checking:
[I]: * Task A: priority=4 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=TN_RC_OK (as

expected)
[I]: * Task B: priority=5 (as expected), wait_reason=MUTEX_I (as expected), last_retval=NOT-YET-RECEIVED (as

expected)
[I]: * Task C: priority=4 (as expected), wait_reason=MUTEX_I (as expected), last_retval=NOT-YET-RECEIVED (as

expected)
[I]: * Mutex M1: holder=A (as expected), lock_cnt=1 (as expected), exists=yes (as expected)
//-- A deleted M1 -> B and C become runnable and have retval TN_RC_DELETED, A has its base priority (line

431 in ../source/appl/appl_tntest/appl_tntest_mutex.c)
[I]: tnt_item_proceed():2101: ----- Command to task A: delete mutex M1 (0xa0004c40)
[I]: tnt_item_proceed():2160: Wait 80 ticks
[I]: [Task A]: deleting mutex (0xa0004c40)..
[I]: [Task C]: mutex (0xa0004c40) locking failed with err=-8
[I]: [Task C]: waiting for command..
[I]: [Task B]: mutex (0xa0004c40) locking failed with err=-8

Generated by Doxygen

11.3 Get unit-tests 41

[I]: [Task B]: waiting for command..
[I]: [Task A]: mutex (0xa0004c40) deleted
[I]: [Task A]: waiting for command..
[I]: tnt_item_proceed():2178: Checking:
[I]: * Task A: priority=6 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=TN_RC_OK (as

expected)
[I]: * Task B: priority=5 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=TN_RC_DELETED

(as expected)
[I]: * Task C: priority=4 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=TN_RC_DELETED

(as expected)
[I]: * Mutex M1: holder=NONE (as expected), lock_cnt=0 (as expected), exists=no (as expected)

If something goes wrong, there would be no "as expected", but error and explanation what we expected and
what we have. Tests halted.

I do my best to model nearly all possible situations within the each single subsystem (such as mutexes, queues,
etc), including various situations with suspended tasks, deleted tasks, deleted objects, and the like. It helps a lot to
keep the kernel really stable.

11.3 Get unit-tests

Currently, there is a separate repository with unit tests for TNeo: https://bitbucket.org/dfrank/tntest/src/master/
.

Please note that code of unit tests project is not as polished as the code of the kernel itself. My open-source time is
limited, and I prefer to invest it in the kernel as much as possible.

Nevertheless, unit tests do their job efficiently, which is needed.

Also, there is a totally separate, and even better set of tests, implemented by Travis Griggs: https←↩

://github.com/travisgriggs/tneo_tests/ . It allowed him to find and fix a couple of bugs which I
didn't catch with my tests originally (see Changelog for v1.09 to see his contributions).

Generated by Doxygen

https://bitbucket.org/dfrank/tntest/src/master/
https://github.com/travisgriggs
https://github.com/travisgriggs/tneo_tests/
https://github.com/travisgriggs/tneo_tests/
https://github.com/dimonomid/tneo/releases/tag/v1.09

42 Unit tests

Generated by Doxygen

Chapter 12

Plans

No specific plans at the moment.

44 Plans

Generated by Doxygen

Chapter 13

Contribution

Some guidelines on contribution to TNeo.

13.1 Contribution

So you want to contribute to the kernel. That's really cool! Then, please consider the following:

• Please contact me first (mail@dmitryfrank.com is probably the best), so that we can discuss changes
you're going to implement and ways to do that. It is really important to understand each other well, before
actual work is done;

• If you don't have an account on bitbucket.org yet, create it;

• Fork TNeo repository on bitbucket;

• Perform needed changes in your own fork;

• Create a pull request to main repository;

• Your changes get merged into main TNeo repository. You're done, thanks! Now, you're free to delete your
fork or keep it, as you wish.

13.2 Coding standard

I don't have much to say on this topic. The most important and universal thing is: please see as other code is
written and write in a similar manner.

As an addition, I just want to emphasize several aspects that are often a subject to forget:

• Set your editor so that it doesn't use tabs, use exactly 3 spaces for indentation. By the way, you're encouraged
to read my article Indent with tabs, align with spaces, which explains how to use tabs
properly. I really like the idea, but at the moment editors are unfortunately too dumb to follow these guidelines,
and people (including me) generally aren't ready to maintain these conventions manually, so, at least for now,
the easiest and practical solution is to just use spaces only.

• When you add or change something observable, explain it in Changelog.

• Don't forget to write comments so that doxygen can parse them. You don't have to learn doxygen manual
for that, just look as others comments are written.

• When you add new kernel option (to the file tn_cfg_default.h), modify tn_cfg_dispatch.h as
well: add a check that option macro is defined.

And thank you for contribution!

mailto:mail@dmitryfrank.com
http://bitbucket.org
https://bitbucket.org/dfrank/tneokernel
http://dmitryfrank.com/articles/indent_with_tabs_align_with_spaces
http://www.stack.nl/~dimitri/doxygen/

46 Contribution

Generated by Doxygen

Chapter 14

Changelog

TNeo changelog

14.1 Current development version (BETA)

no changes yet

14.2 v1.09

Release date: 2024-12-28

Most of the changes are various bugfixes provided by the community. Thanks a lot guys, I really appreciate the time
and effort you spent on making this project better!

• Fix: at least on ARM Cortex-M7, and probably also on M3, M4 and some other ARMs, sometimes the context
switch did not happen in time, and it was causing issues in e.g. tn_eventgrp_wait, where the waiting
result was wrong. Thanks to Anatol Shiro for identifying and fixing this bug;

• Fix: when the system is recovering from a deadlock (when one of the tasks stopped waiting after a timeout),
the kernel was stuck in an endless loop. Thanks to Travis Griggs for identifying and fixing this
bug, as part of his effort to implement an even better set of tests for TNeo;

• Fix: when creating a higher-priority task from a lower-priority task, and the TN_TASK_CREATE_OPT_ST←↩

ART flag was set, the kernel should switch context to the new task right away, but it wasn't happening. Again,
thanks to Travis Griggs for this fix;

• Fix: the project was unable to build for 64-bit platforms where unsigned long int and int have differ-
ent sizes. Thanks to alecoding for the fix;

• Fix: the project was unable to build without #TN_USE_MUTEXES or #TN_MUTEX_DEADLOCK_DETECT;

• Added support of -pedantic mode for Cortex-M architectures.

https://github.com/AnatolShiro
https://github.com/dimonomid/tneo/commit/d036aa22269eb1d3557c2d1b6df4fd41fd1c55ec
https://github.com/travisgriggs
https://github.com/dimonomid/tneo/commit/2d8e8d38635413fdd86fb7934b18e3637b3ffa04
https://github.com/dimonomid/tneo/commit/2d8e8d38635413fdd86fb7934b18e3637b3ffa04
https://github.com/travisgriggs/tneo_tests
https://github.com/travisgriggs
https://github.com/dimonomid/tneo/commit/9d886c9448b9d93dcb07309bcc5b45c84a1bfdd9
https://github.com/alecoding
https://github.com/dimonomid/tneo/commit/5a89f5a39dd6ed60e09f4c0385aba294944f1265

48 Changelog

14.3 v1.08

Release date: 2017-02-25

• Timers API changed: now, timer callback #TN_TimerFunc is called with global interrupts enabled.

• Fix for pic24/dspic: previously, initial value of PSVPAG for new tasks was always 0, but it is not necessarily
the case. This might cause troubles with constants in program space. Now, when initializing stack for new
task, current value of PSVPAG is used.

• Fixed round robin:

– Even though the tasks were flipped in the runnable tasks queue, the actual context switch wasn't per-
formed;

– Tasks were switched with a requested period + 1 tick.

• Added an option #TN_FORCED_INLINE

• Added an option #TN_MAX_INLINE

14.4 v1.07

Release date: 2015-03-17

• Fix: project was unable to build with #TN_CHECK_PARAM set to 0

• Fix: Cortex-M0/M0+ port didn't work if there is some on-context-switch handler (#TN_PROFILER or #TN←↩

_STACK_OVERFLOW_CHECK)

• Added support of C++ compiler (experimental)

• Added an option #TN_INIT_INTERRUPT_STACK_SPACE

• Added services to get count of free and used memory blocks (tn_fmem_free_blocks_cnt_get() /
tn_fmem_used_blocks_cnt_get()) and items in the queue (tn_queue_free_items_cnt_get()
/ tn_queue_used_items_cnt_get()).

• Removed some checks from tn_tick_int_processing(), since they aren't too useful there, but they
add overhead (See bitbucket issue #2)

• Added functions for disabling/enabling scheduler: tn_sched_dis_save() / tn_sched_restore().

• Id fields of objects (enum #TN_ObjId) are moved to the beginning of object structures, to make memory
corruptions detected earlier.

• Idle task is now created with name "Idle" specified.

Generated by Doxygen

https://bitbucket.org/dfrank/tneokernel/issue/2/system-clock-service-routine-could-be-more

14.5 v1.06 49

14.5 v1.06

Release date: 2015-01-02.

• Cortex-M0/M0+/M1/M3/M4/M4F architectures are now supported.

– The following compilers are tested:

* ARMCC (Keil RealView)

* GCC

– Should work but not tested carefully:

* clang

* IAR

• Software task stack overflow check (optionally), see #TN_STACK_OVERFLOW_CHECK for details.

• Dynamic tick, or tickless (optionally): refer to the page Time ticks for details.

• Profiler (optionally): allows to see how much time task was running, how much time it was waiting and for
what it was waiting, and so on. Refer to the documentation of struct #TN_TaskTiming for details.

• Old TNKernel events compatibility mode, see #TN_OLD_EVENT_API for details.

• Event groups: added #TN_EVENTGRP_WMODE_AUTOCLR flag which allows to clear event bits atomically
when task successfully finishes waiting for these event bits.

• PIC24/dsPIC: little optimization: ffs (find-first-set bit) is implemented in an efficient PIC24/dsPIC-specific way,
so finding next task to run now works a bit faster.

• Added run-time check which ensures that build-time options for the kernel match ones for the application. For
details, refer to the option #TN_CHECK_BUILD_CFG. Note: in your existing project that uses TNeo as a
separate library, you need either:

– Include the file <tneo_path>/src/tn_app_check.c to the application project (recommended);

– In your tn_cfg.h file, set #TN_CHECK_BUILD_CFG to 0 and rebuild the kernel with the new con-
figuration (not recommended).

But if you build TNeo together with the application, this option is useless, so then just set #TN_CHECK_B←↩

UILD_CFG to 0.

• MPLABX projects for PIC32 and PIC24/dsPIC moved to lib_project directory. If you use these library
projects from the repository directly in your application, you need to modify path to the library project in your
application project.

• The project's name is shortened to TNeo.

14.6 v1.04

Release date: 2014-11-04.

• Added PIC24/dsPIC support, refer to the page PIC24/dsPIC port details;

• PIC32: Core Software Interrupt is now handled by the kernel completely, application shouldn't set it up any-
more. Refer to the page PIC32 port details.

• Refactor: the following symbols: NULL, BOOL, TRUE, FALSE now have the TN_ prefix: #TN_NULL, #T←↩

N_BOOL, #TN_TRUE, #TN_FALSE. This is because non-prefixed symbols may be defined by some other
program module, which leads to conflicts. The easiest and robust way is to add unique prefix.

• Refactor: PIC32 MPLABX project renamed from tneo.X to tneo_pic32.X.

• Refactor: PIC32 ISR macros renamed: tn_soft_isr() -> tn_p32_soft_isr(), tn_srs_isr()
-> tn_p32_srs_isr(). It is much easier to maintain documentation for different macros if they have
different names; more, the signature of these macros is architecture-dependent. Old names are also available
for backward compatibility.

Generated by Doxygen

50 Changelog

14.7 v1.03

Release date: 2014-10-20.

• Added a capability to connect an event group to other system objects, particularly to the queue. This of-
fers a way to wait for messages from multiple queues with just a single system call. Refer to the section
Connecting an event group to other system objects for details. Example project that demonstrates that tech-
nique is also available: examples/queue_eventgrp_conn.

• PIC32 Interrupts: this isn't a mandatory anymore to use kernel-provided macros tn_p32_soft_isr() or
tn_p32_srs_isr(): interrupts can be defined with standard way too: this particular ISR will use task's
stack instead of interrupt stack, therefore it takes much more RAM and works a bit faster. There are no
additional constraints on ISR defined without kernel-provided macro: in either ISR, you can call the same set
of kernel services. Refer to the page Interrupts for details.

• Priority 0 is now allowed to use by application (in the original TNKernel, it was reserved for the timer task, but
TNeo does not have timer task)

• Application is now available to specify how many priority levels does it need for, it helps to save a bit of RAM.
For details, refer to #TN_PRIORITIES_CNT.

• Added example project examples/queue that demonstrates the pattern on how to use queue together
with fixed memory pool effectively.

14.8 v1.02

Release date: 2014-10-14.

• Added timers: kernel objects that are used to ask the kernel to call some user-provided function at a particular
time in the future;

• Removed tn_sys_time_set() function, because now TNeo uses internal system tick count for timers,
and modifying system tick counter by user is a really bad idea.

14.9 v1.01

Release date: 2014-10-09.

• FIX: tn_queue_receive() and tn_fmem_get() : if non-zero timeout is in effect, then #TN_R←↩

C_TIMEOUT is returned, but user-provided pointer is altered anyway (some garbage data is written there).
This bug was inherited from TNKernel.

• Added tn_task_state_get()

• tn_sem_acquire() and friends are renamed to tn_sem_wait() and friends. More on this read here.
Old name is still available through tn_oldsymbols.h.

14.10 v1.0

Release date: 2014-10-01.

• Initial stable version of TNeo. Lots of work done: thorough review and re-implementation of TNKernel 2.7,
implemented detailed unit tests, and so on.

Generated by Doxygen

Chapter 15

Thanks

There are people that I would like to thank:

• Yuri Tiomkin - for original TNKernel. Although the implementation of TNKernel is far from perfect in my
opinion, the ideas behind the implementation are generally really nice (that's why I decided to reimplement it
instead of starting from scratch), and it was great entry point to the real-time kernels for me;

• Anders Montonen - for original implementation of TNKernel-PIC32 port;

• Alex Borisov - for TNKernel port which I used to use for a long time;

• StarLine company - for being a sponsor of kernel port for Cortex-M architecture as well as a couple of
other features: profiler, dynamic tick.

• Alexey Morozov and Alexey Gromov, my chiefs in the ORION company, for being flexible about my time;

• Robert White - for nice ideas and participation;

• Christoph Bayer - for contribution in TNeo.

Thank you guys. TNeo would never be what it is without you.

https://github.com/andersm
http://starline.ru
http://orionspb.ru/
https://bitbucket.org/chrbayer

52 Thanks

Generated by Doxygen

Chapter 16

License

TNeo: real-time kernel initially based on TNKernel

• TNKernel: copyright 2004, 2013 Yuri Tiomkin.

• PIC32-specific routines: copyright 2013, 2014 Anders Montonen.

• TNeo: copyright 2014 Dmitry Frank.

TNeo was born as a thorough review and re-implementation of TNKernel. The new kernel has well-formed code,
inherited bugs are fixed as well as new features being added, and it is tested carefully with unit-tests.

API is changed somewhat, so it's not 100% compatible with TNKernel, hence the new name: TNeo.

Permission to use, copy, modify, and distribute this software in source and binary forms and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.

THIS SOFTWARE IS PROVIDED BY THE DMITRY FRANK AND CONTRIBUTORS "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHA←↩

NTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DMITRY
FRANK OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLA←↩

RY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (I←↩

NCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

54 License

Generated by Doxygen

Chapter 17

Legend

In the functions API documentation, the following designations are used:

• Function can be called from task

• Function can be called from ISR

• Function can switch context to different task

• Function can sleep

56 Legend

Generated by Doxygen

Chapter 18

Data Structure Index

18.1 Data Structures

Here are the data structures with brief descriptions:

_TN_BuildCfg
Structure with build-time configurations values; it is needed for run-time check which ensures
that build-time options for the kernel match ones for the application 61

_TN_TaskProfiler
Internal kernel structure for profiling data of task . 62

TN_DQueue
Structure representing data queue object . 63

TN_DQueueTaskWait
DQueue-specific fields related to waiting task, to be included in struct TN_Task 64

TN_EGrpLink
A link to event group: used when event group can be connected to some kernel object, such as
queue . 64

TN_EGrpTaskWait
EventGrp-specific fields related to waiting task, to be included in struct TN_Task 65

TN_EventGrp
Event group . 65

TN_FMem
Fixed memory blocks pool . 66

TN_FMemTaskWait
FMem-specific fields related to waiting task, to be included in struct TN_Task 67

TN_ListItem
Circular doubly linked list item, for internal kernel usage . 68

TN_Mutex
Mutex . 68

TN_Sem
Semaphore . 69

TN_Task
Task . 70

TN_TaskTiming
Timing structure that is managed by profiler and can be read by #tn_task_profiler_timing_get()
function . 73

TN_Timer
Timer . 75

58 Data Structure Index

Generated by Doxygen

Chapter 19

File Index

19.1 File List

Here is a list of all documented files with brief descriptions:

tn.h . 163
tn_app_check.c . 163
tn_cfg_default.h . 163
arch/tn_arch.h . 93
arch/cortex_m/tn_arch_cortex_m.h . 79
arch/example/tn_arch_example.h . 79
arch/pic24_dspic/tn_arch_pic24.h . 85
arch/pic24_dspic/tn_arch_pic24_bfa.h . 86
arch/pic32/tn_arch_pic32.h . 88
arch/pic32/tn_arch_pic32_bfa.h . 91
core/tn_cfg_dispatch.h . 98
core/tn_common.h . 99
core/tn_common_macros.h . 103
core/tn_dqueue.h . 104
core/tn_eventgrp.h . 111
core/tn_fmem.h . 118
core/tn_list.h . 124
core/tn_mutex.h . 124
core/tn_oldsymbols.h . 128
core/tn_sem.h . 134
core/tn_sys.h . 137
core/tn_tasks.h . 146
core/tn_timer.h . 157

60 File Index

Generated by Doxygen

Chapter 20

Data Structure Documentation

20.1 _TN_BuildCfg Struct Reference

20.1.1 Detailed Description

Structure with build-time configurations values; it is needed for run-time check which ensures that build-time options
for the kernel match ones for the application.

See #TN_CHECK_BUILD_CFG for details.

Definition at line 169 of file tn_sys.h.

Data Fields

• unsigned priorities_cnt: 7

Value of #TN_PRIORITIES_CNT

• unsigned check_param: 1

Value of #TN_CHECK_PARAM

• unsigned debug: 1

Value of #TN_DEBUG

• unsigned use_mutexes: 1

Value of #TN_USE_MUTEXES

• unsigned mutex_rec: 1

Value of #TN_MUTEX_REC

• unsigned mutex_deadlock_detect: 1

Value of #TN_MUTEX_DEADLOCK_DETECT

• unsigned tick_lists_cnt_minus_one: 8

Value of #TN_TICK_LISTS_CNT minus one.

• unsigned api_make_alig_arg: 2

Value of #TN_API_MAKE_ALIG_ARG

• unsigned profiler: 1

Value of #TN_PROFILER

• unsigned profiler_wait_time: 1

Value of #TN_PROFILER_WAIT_TIME

• unsigned stack_overflow_check: 1

62 Data Structure Documentation

Value of #TN_STACK_OVERFLOW_CHECK

• unsigned dynamic_tick: 1

Value of #TN_DYNAMIC_TICK

• unsigned old_events_api: 1

Value of #TN_OLD_EVENT_API

•

union {
TN_UWord dummy

On some architectures, we don't have any arch-dependent build-time options, but we need this "dummy" value to avoid errors of crappy compilers that don't allow empty structure initializers (like ARMCC)
struct {

unsigned p24_sys_ipl: 3
Value of #TN_P24_SYS_IPL

} p24
PIC24/dsPIC-dependent values.

} arch

Architecture-dependent values.

The documentation for this struct was generated from the following file:

• core/tn_sys.h

20.2 _TN_TaskProfiler Struct Reference

20.2.1 Detailed Description

Internal kernel structure for profiling data of task.

Available if only #TN_PROFILER option is non-zero.

Definition at line 302 of file tn_tasks.h.

Data Fields

• TN_TickCnt last_tick_cnt

Tick count of when the task got running or non-running last time.

• enum TN_WaitReason last_wait_reason

Available if only #TN_PROFILER_WAIT_TIME option is non-zero.

• struct TN_TaskTiming timing

Main timing structure managed by profiler.

20.2.2 Field Documentation

Generated by Doxygen

20.3 TN_DQueue Struct Reference 63

20.2.2.1 last_wait_reason

enum TN_WaitReason _TN_TaskProfiler::last_wait_reason

Available if only #TN_PROFILER_WAIT_TIME option is non-zero.

Value of task->task_wait_reason when task got non-running last time.

Definition at line 311 of file tn_tasks.h.

20.2.2.2 timing

struct TN_TaskTiming _TN_TaskProfiler::timing

Main timing structure managed by profiler.

Contents of this structure can be read by #tn_task_profiler_timing_get() function.

Definition at line 323 of file tn_tasks.h.

The documentation for this struct was generated from the following file:

• core/tn_tasks.h

20.3 TN_DQueue Struct Reference

20.3.1 Detailed Description

Structure representing data queue object.

Definition at line 105 of file tn_dqueue.h.

Data Fields

• enum TN_ObjId id_dque

id for object validity verification.
• struct TN_ListItem wait_send_list

list of tasks waiting to send data
• struct TN_ListItem wait_receive_list

list of tasks waiting to receive data
• void ∗∗ data_fifo

array of void ∗ to store data queue items. Can be TN_NULL.
• int items_cnt

capacity (total items count). Can be 0.
• int filled_items_cnt

count of non-free items in data_fifo
• int head_idx

index of the item which will be written next time
• int tail_idx

index of the item which will be read next time
• struct TN_EGrpLink eventgrp_link

connected event group

Generated by Doxygen

64 Data Structure Documentation

20.3.2 Field Documentation

20.3.2.1 id_dque

enum TN_ObjId TN_DQueue::id_dque

id for object validity verification.

This field is in the beginning of the structure to make it easier to detect memory corruption.

Definition at line 116 of file tn_dqueue.h.

The documentation for this struct was generated from the following file:

• core/tn_dqueue.h

20.4 TN_DQueueTaskWait Struct Reference

20.4.1 Detailed Description

DQueue-specific fields related to waiting task, to be included in struct TN_Task.

Definition at line 142 of file tn_dqueue.h.

Data Fields

• void ∗ data_elem

if task tries to send the data to the data queue, and there's no space in the queue, value to put to queue is stored in
this field

The documentation for this struct was generated from the following file:

• core/tn_dqueue.h

20.5 TN_EGrpLink Struct Reference

20.5.1 Detailed Description

A link to event group: used when event group can be connected to some kernel object, such as queue.

Definition at line 254 of file tn_eventgrp.h.

Generated by Doxygen

20.6 TN_EGrpTaskWait Struct Reference 65

Data Fields

• struct TN_EventGrp ∗ eventgrp

event group whose event(s) should be managed by other kernel object

• TN_UWord pattern

event pattern to manage

The documentation for this struct was generated from the following file:

• core/tn_eventgrp.h

20.6 TN_EGrpTaskWait Struct Reference

20.6.1 Detailed Description

EventGrp-specific fields related to waiting task, to be included in struct TN_Task.

Definition at line 238 of file tn_eventgrp.h.

Data Fields

• TN_UWord wait_pattern

event wait pattern

• enum TN_EGrpWaitMode wait_mode

event wait mode: AND or OR

• TN_UWord actual_pattern

pattern that caused task to finish waiting

The documentation for this struct was generated from the following file:

• core/tn_eventgrp.h

20.7 TN_EventGrp Struct Reference

20.7.1 Detailed Description

Event group.

Definition at line 212 of file tn_eventgrp.h.

Generated by Doxygen

66 Data Structure Documentation

Data Fields

• enum TN_ObjId id_event

id for object validity verification.
• struct TN_ListItem wait_queue

task wait queue
• TN_UWord pattern

current flags pattern
• enum TN_EGrpAttr attr

Attributes that are given to that events group, available if only #TN_OLD_EVENT_API option is non-zero.

20.7.2 Field Documentation

20.7.2.1 id_event

enum TN_ObjId TN_EventGrp::id_event

id for object validity verification.

This field is in the beginning of the structure to make it easier to detect memory corruption.

Definition at line 217 of file tn_eventgrp.h.

The documentation for this struct was generated from the following file:

• core/tn_eventgrp.h

20.8 TN_FMem Struct Reference

20.8.1 Detailed Description

Fixed memory blocks pool.

Definition at line 80 of file tn_fmem.h.

Data Fields

• enum TN_ObjId id_fmp

id for object validity verification.
• struct TN_ListItem wait_queue

list of tasks waiting for free memory block
• unsigned int block_size

block size (in bytes); note that it should be a multiple of sizeof(#TN_UWord}), use a macro TN_MAKE_ALIG_SIZE()
for that.

• int blocks_cnt

capacity (total blocks count)
• int free_blocks_cnt

free blocks count
• void ∗ start_addr

memory pool start address; note that it should be a multiple of sizeof(#TN_UWord).
• void ∗ free_list

Pointer to the first free memory block.

Generated by Doxygen

20.9 TN_FMemTaskWait Struct Reference 67

20.8.2 Field Documentation

20.8.2.1 id_fmp

enum TN_ObjId TN_FMem::id_fmp

id for object validity verification.

This field is in the beginning of the structure to make it easier to detect memory corruption.

Definition at line 89 of file tn_fmem.h.

20.8.2.2 block_size

unsigned int TN_FMem::block_size

block size (in bytes); note that it should be a multiple of sizeof(#TN_UWord}), use a macro
TN_MAKE_ALIG_SIZE() for that.

See also

TN_MAKE_ALIG_SIZE()

Definition at line 99 of file tn_fmem.h.

20.8.2.3 free_list

void∗ TN_FMem::free_list

Pointer to the first free memory block.

Each free block contains the pointer to the next free memory block as the first word, or NULL if this is the last block.

Definition at line 114 of file tn_fmem.h.

The documentation for this struct was generated from the following file:

• core/tn_fmem.h

20.9 TN_FMemTaskWait Struct Reference

20.9.1 Detailed Description

FMem-specific fields related to waiting task, to be included in struct TN_Task.

Definition at line 118 of file tn_fmem.h.

Generated by Doxygen

68 Data Structure Documentation

Data Fields

• void ∗ data_elem

if task tries to receive data from memory pool, and there's no more free blocks in the pool, location to store pointer is
saved in this field

The documentation for this struct was generated from the following file:

• core/tn_fmem.h

20.10 TN_ListItem Struct Reference

20.10.1 Detailed Description

Circular doubly linked list item, for internal kernel usage.

Definition at line 63 of file tn_list.h.

Data Fields

• struct TN_ListItem ∗ prev

pointer to previous item

• struct TN_ListItem ∗ next

pointer to next item

The documentation for this struct was generated from the following file:

• core/tn_list.h

20.11 TN_Mutex Struct Reference

20.11.1 Detailed Description

Mutex.

Definition at line 122 of file tn_mutex.h.

Generated by Doxygen

20.12 TN_Sem Struct Reference 69

Data Fields

• enum TN_ObjId id_mutex

id for object validity verification.

• struct TN_ListItem wait_queue

List of tasks that wait a mutex.

• struct TN_ListItem mutex_queue

To include in task's locked mutexes list (if any)

• struct TN_ListItem deadlock_list

List of other mutexes involved in deadlock (normally, this list is empty)

• enum TN_MutexProtocol protocol

Mutex protocol: priority ceiling or priority inheritance.

• struct TN_Task ∗ holder

Current mutex owner (task that locked mutex)

• int ceil_priority

Used if only protocol is #TN_MUTEX_PROT_CEILING: maximum priority of task that may lock the mutex.

• int cnt

Lock count (for recursive locking)

20.11.2 Field Documentation

20.11.2.1 id_mutex

enum TN_ObjId TN_Mutex::id_mutex

id for object validity verification.

This field is in the beginning of the structure to make it easier to detect memory corruption.

Definition at line 127 of file tn_mutex.h.

The documentation for this struct was generated from the following file:

• core/tn_mutex.h

20.12 TN_Sem Struct Reference

20.12.1 Detailed Description

Semaphore.

Definition at line 88 of file tn_sem.h.

Generated by Doxygen

70 Data Structure Documentation

Data Fields

• enum TN_ObjId id_sem

id for object validity verification.

• struct TN_ListItem wait_queue

List of tasks that wait for the semaphore.

• int count

Current semaphore counter value.

• int max_count

Max value of count

20.12.2 Field Documentation

20.12.2.1 id_sem

enum TN_ObjId TN_Sem::id_sem

id for object validity verification.

This field is in the beginning of the structure to make it easier to detect memory corruption.

Definition at line 97 of file tn_sem.h.

The documentation for this struct was generated from the following file:

• core/tn_sem.h

20.13 TN_Task Struct Reference

20.13.1 Detailed Description

Task.

Definition at line 330 of file tn_tasks.h.

Generated by Doxygen

20.13 TN_Task Struct Reference 71

Data Fields

• TN_UWord ∗ stack_cur_pt

pointer to task's current top of the stack; Note that this field must be a first field in the struct, this fact is exploited by
platform-specific routines.

• enum TN_ObjId id_task

id for object validity verification.

• struct TN_ListItem task_queue

queue is used to include task in ready/wait lists

• struct TN_Timer timer

timer object to implement task waiting for timeout

• struct TN_ListItem ∗ pwait_queue

pointer to object's (semaphore, mutex, event, etc) wait list in which task is included for waiting

• struct TN_ListItem create_queue

queue is used to include task in creation list (currently, this list is used for statistics only)

• struct TN_ListItem mutex_queue

list of all mutexes that are locked by task

• struct TN_ListItem deadlock_list

list of other tasks involved in deadlock.

• TN_UWord ∗ stack_low_addr

– lowest address of stack.

• TN_UWord ∗ stack_high_addr

– Highest address of stack.

• TN_TaskBody ∗ task_func_addr

pointer to task's body function given to tn_task_create()

• void ∗ task_func_param

pointer to task's parameter given to tn_task_create()

• int base_priority

base priority of the task (actual current priority may be higher than base priority because of mutex)

• int priority

current task priority

• enum TN_TaskState task_state

task state

• enum TN_WaitReason task_wait_reason

reason for waiting (relevant if only task_state is WAIT or WAIT+SUSPEND)

• enum TN_RCode task_wait_rc

waiting result code (reason why waiting finished)

• int tslice_count

time slice counter

• union {
struct TN_EGrpTaskWait eventgrp

fields specific to tn_eventgrp.h
struct TN_DQueueTaskWait dqueue

fields specific to tn_dqueue.h
struct TN_FMemTaskWait fmem

fields specific to tn_fmem.h
} subsys_wait

subsystem-specific fields that are used while task waits for something.

• const char ∗ name

Task name for debug purposes, user may want to set it by hand.

• struct _TN_TaskProfiler profiler

Generated by Doxygen

72 Data Structure Documentation

Profiler data, available if only #TN_PROFILER is non-zero.

• unsigned priority_already_updated: 1

Internal flag used to optimize mutex priority algorithms.

• unsigned waited: 1

Flag indicates that task waited for something This flag is set automatially in _tn_task_set_waiting() Must be
cleared manually before calling any service that could sleep, if the caller is interested in the relevant value of this flag.

20.13.2 Field Documentation

20.13.2.1 id_task

enum TN_ObjId TN_Task::id_task

id for object validity verification.

This field is in the beginning of the structure to make it easier to detect memory corruption. For struct TN_Task,
we can't make it the very first field, since stack pointer should be there.

Definition at line 341 of file tn_tasks.h.

20.13.2.2 deadlock_list

struct TN_ListItem TN_Task::deadlock_list

list of other tasks involved in deadlock.

This list is non-empty only in emergency cases, and it is here to help you fix your bug that led to deadlock.

See also

#TN_MUTEX_DEADLOCK_DETECT

Definition at line 368 of file tn_tasks.h.

20.13.2.3 stack_low_addr

TN_UWord∗ TN_Task::stack_low_addr

– lowest address of stack.

It is independent of architecture: it's always the lowest address (which may be actually origin or end of stack,
depending on the architecture)

Definition at line 375 of file tn_tasks.h.

Generated by Doxygen

20.14 TN_TaskTiming Struct Reference 73

20.13.2.4 stack_high_addr

TN_UWord∗ TN_Task::stack_high_addr

– Highest address of stack.

It is independent of architecture: it's always the highest address (which may be actually origin or end of stack,
depending on the architecture)

Definition at line 379 of file tn_tasks.h.

20.13.2.5 subsys_wait

union { ... } TN_Task::subsys_wait

subsystem-specific fields that are used while task waits for something.

Do note that these fields are grouped by union, so, they must not interfere with each other. It's quite ok here because
task can't wait for different things.

20.13.2.6 priority_already_updated

unsigned TN_Task::priority_already_updated

Internal flag used to optimize mutex priority algorithms.

For the comments on it, see file tn_mutex.c, function _mutex_do_unlock().

Definition at line 441 of file tn_tasks.h.

The documentation for this struct was generated from the following file:

• core/tn_tasks.h

20.14 TN_TaskTiming Struct Reference

20.14.1 Detailed Description

Timing structure that is managed by profiler and can be read by #tn_task_profiler_timing_get() func-
tion.

This structure is contained in each struct #TN_Task structure.

Available if only #TN_PROFILER option is non-zero, also depends on #TN_PROFILER_WAIT_TIME.

Definition at line 254 of file tn_tasks.h.

Generated by Doxygen

74 Data Structure Documentation

Data Fields

• unsigned long long total_run_time

Total time when task was running.

• unsigned long long got_running_cnt

How many times task got running.

• unsigned long max_consecutive_run_time

Maximum consecutive time task was running.

• unsigned long long total_wait_time [TN_WAIT_REASONS_CNT]

Available if only #TN_PROFILER_WAIT_TIME option is non-zero.

• unsigned long max_consecutive_wait_time [TN_WAIT_REASONS_CNT]

Available if only #TN_PROFILER_WAIT_TIME option is non-zero.

20.14.2 Field Documentation

20.14.2.1 total_run_time

unsigned long long TN_TaskTiming::total_run_time

Total time when task was running.

Attention

This is NOT the time that task was in RUNNABLE state: if task A is preempted by high-priority task B, task A
is not running, but is still in the RUNNABLE state. This counter represents the time task was actually running.

Definition at line 263 of file tn_tasks.h.

20.14.2.2 got_running_cnt

unsigned long long TN_TaskTiming::got_running_cnt

How many times task got running.

It is useful to find an average value of consecutive running time: (total_run_time / got_running_cnt)

Definition at line 267 of file tn_tasks.h.

Generated by Doxygen

20.15 TN_Timer Struct Reference 75

20.14.2.3 total_wait_time

unsigned long long TN_TaskTiming::total_wait_time[TN_WAIT_REASONS_CNT]

Available if only #TN_PROFILER_WAIT_TIME option is non-zero.

Total time when task was not running; time is broken down by reasons of waiting.

For example, to get the time task was waiting for mutexes with priority inheritance protocol, use: total_wait←↩

_time[#TN_WAIT_REASON_MUTEX_I]

To get the time task was runnable but preempted by another task, use: total_wait_time[#TN_WAIT_R←↩

EASON_NONE]

Definition at line 285 of file tn_tasks.h.

20.14.2.4 max_consecutive_wait_time

unsigned long TN_TaskTiming::max_consecutive_wait_time[TN_WAIT_REASONS_CNT]

Available if only #TN_PROFILER_WAIT_TIME option is non-zero.

Maximum consecutive time task was not running; time is broken down by reasons of waiting.

See also

total_wait_time

Definition at line 293 of file tn_tasks.h.

The documentation for this struct was generated from the following file:

• core/tn_tasks.h

20.15 TN_Timer Struct Reference

20.15.1 Detailed Description

Timer.

Definition at line 203 of file tn_timer.h.

Generated by Doxygen

76 Data Structure Documentation

Data Fields

• enum TN_ObjId id_timer

id for object validity verification.

• struct TN_ListItem timer_queue

A list item to be included in the system timer queue.

• TN_TimerFunc ∗ func

Function to be called by timer.

• void ∗ p_user_data

User data pointer that is given to user-provided func.

• TN_TickCnt start_tick_cnt

Available if only TN_DYNAMIC_TICK is set.

• TN_TickCnt timeout

Available if only TN_DYNAMIC_TICK is set.

• TN_TickCnt timeout_cur

Available if only TN_DYNAMIC_TICK is not set.

20.15.2 Field Documentation

20.15.2.1 id_timer

enum TN_ObjId TN_Timer::id_timer

id for object validity verification.

This field is in the beginning of the structure to make it easier to detect memory corruption.

Definition at line 208 of file tn_timer.h.

20.15.2.2 start_tick_cnt

TN_TickCnt TN_Timer::start_tick_cnt

Available if only TN_DYNAMIC_TICK is set.

Tick count value when timer was started

Definition at line 224 of file tn_timer.h.

Generated by Doxygen

20.15 TN_Timer Struct Reference 77

20.15.2.3 timeout

TN_TickCnt TN_Timer::timeout

Available if only TN_DYNAMIC_TICK is set.

Timeout value (it is set just once, and stays unchanged until timer is expired, cancelled or restarted)

Definition at line 230 of file tn_timer.h.

20.15.2.4 timeout_cur

TN_TickCnt TN_Timer::timeout_cur

Available if only TN_DYNAMIC_TICK is not set.

Current (left) timeout value

Definition at line 238 of file tn_timer.h.

The documentation for this struct was generated from the following file:

• core/tn_timer.h

Generated by Doxygen

78 Data Structure Documentation

Generated by Doxygen

Chapter 21

File Documentation

21.1 arch/cortex_m/tn_arch_cortex_m.h File Reference

21.1.1 Detailed Description

Cortex-M0/M0+/M3/M4/M4F architecture-dependent routines

21.2 arch/example/tn_arch_example.h File Reference

21.2.1 Detailed Description

Example of architecture-dependent routines

Macros

• #define _TN_FFS(x) (32 - __builtin_clz((x) & (0 - (x))))

FFS - find first set bit.

• #define _TN_FATAL_ERRORF(error_msg, ...) {__asm__ volatile(" sdbbp 0"); __asm__ volatile ("nop");}

Used by the kernel as a signal that something really bad happened.

• #define TN_ARCH_STK_ATTR_BEFORE

Compiler-specific attribute that should be placed before declaration of array used for stack.

• #define TN_ARCH_STK_ATTR_AFTER __attribute__((aligned(0x8)))

Compiler-specific attribute that should be placed after declaration of array used for stack.

• #define TN_MIN_STACK_SIZE 36

Minimum task's stack size, in words, not in bytes; includes a space for context plus for parameters passed to task's
body function.

• #define TN_INT_WIDTH 32

Width of int type.

• #define TN_PRIORITIES_MAX_CNT TN_INT_WIDTH

Maximum number of priorities available, this value usually matches #TN_INT_WIDTH.

• #define TN_WAIT_INFINITE (TN_TickCnt)0xFFFFFFFF

Value for infinite waiting, usually matches ULONG_MAX, because #TN_TickCnt is declared as unsigned long.

80 File Documentation

• #define TN_FILL_STACK_VAL 0xFEEDFACE

Value for initializing the unused space of task's stack.
• #define TN_INTSAVE_DATA int tn_save_status_reg = 0;

Declares variable that is used by macros TN_INT_DIS_SAVE() and TN_INT_RESTORE() for storing status
register value.

• #define TN_INTSAVE_DATA_INT TN_INTSAVE_DATA

The same as #TN_INTSAVE_DATA but for using in ISR together with TN_INT_IDIS_SAVE(), TN_INT_IRESTORE().
• #define TN_INT_DIS_SAVE() tn_save_status_reg = tn_arch_sr_save_int_dis()

Disable interrupts and return previous value of status register, atomically.
• #define TN_INT_RESTORE() tn_arch_sr_restore(tn_save_status_reg)

Restore previously saved status register.
• #define TN_INT_IDIS_SAVE() TN_INT_DIS_SAVE()

The same as TN_INT_DIS_SAVE() but for using in ISR.
• #define TN_INT_IRESTORE() TN_INT_RESTORE()

The same as TN_INT_RESTORE() but for using in ISR.
• #define TN_IS_INT_DISABLED() ((__builtin_mfc0(12, 0) & 1) == 0)

Returns nonzero if interrupts are disabled, zero otherwise.
• #define _TN_CONTEXT_SWITCH_IPEND_IF_NEEDED() _tn_context_switch_pend_if_needed()

Pend context switch from interrupt.
• #define _TN_SIZE_BYTES_TO_UWORDS(size_in_bytes) ((size_in_bytes) >> 2)

Converts size in bytes to size in #TN_UWord.
• #define _TN_INLINE inline

If compiler does not conform to c99 standard, there's no inline keyword.
• #define _TN_STATIC_INLINE static _TN_INLINE

For some compilers, order of these qualifiers matters (at least when _TN_INLINE expands to some compiler-specific
forced inline)

• #define _TN_VOLATILE_WORKAROUND /∗ nothing ∗/
Sometimes compilers are buggy in high-optimization modes, and these bugs are often could be worked around by
adding the volatile keyword.

Typedefs

• typedef unsigned int TN_UWord

Unsigned integer type whose size is equal to the size of CPU register.
• typedef unsigned int TN_UIntPtr

Unsigned integer type that is able to store pointers.

21.2.2 Macro Definition Documentation

21.2.2.1 _TN_FFS

#define _TN_FFS(

x) (32 - __builtin_clz((x) & (0 - (x))))

FFS - find first set bit.

Used in _find_next_task_to_run() function. Say, for 0xa8 it should return 3.

May be not defined: in this case, naive algorithm will be used.

Definition at line 53 of file tn_arch_example.h.

Generated by Doxygen

21.2 arch/example/tn_arch_example.h File Reference 81

21.2.2.2 _TN_FATAL_ERRORF

#define _TN_FATAL_ERRORF(

error_msg,

...) {__asm__ volatile(" sdbbp 0"); __asm__ volatile ("nop");}

Used by the kernel as a signal that something really bad happened.

Indicates TNeo bugs as well as illegal kernel usage, e.g. sleeping in the idle task callback or build-time configuration
mismatch (see #TN_CHECK_BUILD_CFG for details on the last one)

Typically, set to assembler instruction that causes debugger to halt.

Definition at line 63 of file tn_arch_example.h.

21.2.2.3 TN_ARCH_STK_ATTR_BEFORE

#define TN_ARCH_STK_ATTR_BEFORE

Compiler-specific attribute that should be placed before declaration of array used for stack.

It is needed because there are often additional restrictions applied to alignment of stack, so, to meet them, stack
arrays need to be declared with these macros.

See also

TN_ARCH_STK_ATTR_AFTER

Definition at line 77 of file tn_arch_example.h.

21.2.2.4 TN_ARCH_STK_ATTR_AFTER

#define TN_ARCH_STK_ATTR_AFTER __attribute__((aligned(0x8)))

Compiler-specific attribute that should be placed after declaration of array used for stack.

It is needed because there are often additional restrictions applied to alignment of stack, so, to meet them, stack
arrays need to be declared with these macros.

See also

TN_ARCH_STK_ATTR_BEFORE

Definition at line 88 of file tn_arch_example.h.

Generated by Doxygen

82 File Documentation

21.2.2.5 TN_PRIORITIES_MAX_CNT

#define TN_PRIORITIES_MAX_CNT TN_INT_WIDTH

Maximum number of priorities available, this value usually matches #TN_INT_WIDTH.

See also

TN_PRIORITIES_CNT

Definition at line 120 of file tn_arch_example.h.

21.2.2.6 TN_INTSAVE_DATA

#define TN_INTSAVE_DATA int tn_save_status_reg = 0;

Declares variable that is used by macros TN_INT_DIS_SAVE() and TN_INT_RESTORE() for storing status
register value.

See also

TN_INT_DIS_SAVE()

TN_INT_RESTORE()

Definition at line 143 of file tn_arch_example.h.

21.2.2.7 TN_INTSAVE_DATA_INT

#define TN_INTSAVE_DATA_INT TN_INTSAVE_DATA

The same as #TN_INTSAVE_DATA but for using in ISR together with TN_INT_IDIS_SAVE(),
TN_INT_IRESTORE().

See also

TN_INT_IDIS_SAVE()

TN_INT_IRESTORE()

Definition at line 152 of file tn_arch_example.h.

Generated by Doxygen

21.2 arch/example/tn_arch_example.h File Reference 83

21.2.2.8 TN_INT_DIS_SAVE

#define TN_INT_DIS_SAVE() tn_save_status_reg = tn_arch_sr_save_int_dis()

Disable interrupts and return previous value of status register, atomically.

Similar tn_arch_sr_save_int_dis(), but implemented as a macro, so it is potentially faster.

Uses #TN_INTSAVE_DATA as a temporary storage.

See also

#TN_INTSAVE_DATA

tn_arch_sr_save_int_dis()

Definition at line 164 of file tn_arch_example.h.

21.2.2.9 TN_INT_RESTORE

#define TN_INT_RESTORE() tn_arch_sr_restore(tn_save_status_reg)

Restore previously saved status register.

Similar to tn_arch_sr_restore(), but implemented as a macro, so it is potentially faster.

Uses #TN_INTSAVE_DATA as a temporary storage.

See also

#TN_INTSAVE_DATA

tn_arch_sr_save_int_dis()

Definition at line 176 of file tn_arch_example.h.

21.2.2.10 TN_INT_IDIS_SAVE

#define TN_INT_IDIS_SAVE() TN_INT_DIS_SAVE()

The same as TN_INT_DIS_SAVE() but for using in ISR.

Uses #TN_INTSAVE_DATA_INT as a temporary storage.

See also

#TN_INTSAVE_DATA_INT

Definition at line 185 of file tn_arch_example.h.

Generated by Doxygen

84 File Documentation

21.2.2.11 TN_INT_IRESTORE

#define TN_INT_IRESTORE() TN_INT_RESTORE()

The same as TN_INT_RESTORE() but for using in ISR.

Uses #TN_INTSAVE_DATA_INT as a temporary storage.

See also

#TN_INTSAVE_DATA_INT

Definition at line 194 of file tn_arch_example.h.

21.2.2.12 _TN_SIZE_BYTES_TO_UWORDS

#define _TN_SIZE_BYTES_TO_UWORDS(

size_in_bytes) ((size_in_bytes) >> 2)

Converts size in bytes to size in #TN_UWord.

For 32-bit platforms, we should shift it by 2 bit to the right; for 16-bit platforms, we should shift it by 1 bit to the right.

Definition at line 213 of file tn_arch_example.h.

21.2.2.13 _TN_INLINE

#define _TN_INLINE inline

If compiler does not conform to c99 standard, there's no inline keyword.

So, there's a special macro for that.

Definition at line 223 of file tn_arch_example.h.

21.2.2.14 _TN_VOLATILE_WORKAROUND

#define _TN_VOLATILE_WORKAROUND /∗ nothing ∗/

Sometimes compilers are buggy in high-optimization modes, and these bugs are often could be worked around by
adding the volatile keyword.

It is compiler-dependent, so, there's a special macro for that.

Definition at line 238 of file tn_arch_example.h.

Generated by Doxygen

21.3 arch/pic24_dspic/tn_arch_pic24.h File Reference 85

21.2.3 Typedef Documentation

21.2.3.1 TN_UWord

typedef unsigned int TN_UWord

Unsigned integer type whose size is equal to the size of CPU register.

Typically it's plain unsigned int.

Definition at line 105 of file tn_arch_example.h.

21.2.3.2 TN_UIntPtr

typedef unsigned int TN_UIntPtr

Unsigned integer type that is able to store pointers.

We need it because some platforms don't define uintptr_t. Typically it's unsigned int.

Definition at line 112 of file tn_arch_example.h.

21.3 arch/pic24_dspic/tn_arch_pic24.h File Reference

21.3.1 Detailed Description

PIC24/dsPIC architecture-dependent routines

Macros

• #define tn_p24_soft_isr(_func, _psv) _tn_soft_isr_internal(_func, _psv,)

ISR wrapper macro for software context saving.

21.3.2 Macro Definition Documentation

Generated by Doxygen

86 File Documentation

21.3.2.1 tn_p24_soft_isr

#define tn_p24_soft_isr(

_func,

_psv) _tn_soft_isr_internal(_func, _psv,)

ISR wrapper macro for software context saving.

Usage looks like the following:
tn_p24_soft_isr(_T1Interrupt, auto_psv)
{

//-- clear interrupt flag
IFS0bits.T1IF = 0;
//-- do something useful

}

Which should be used for system interrupts, instead of standard way:
void __attribute__((__interrupt__, auto_psv)) _T1Interrupt(void)

Where _T1Interrupt is the usual PIC24/dsPIC ISR name, and auto_psv (or no_auto_psv) is the usual
attribute argument for interrupt.

Definition at line 484 of file tn_arch_pic24.h.

21.4 arch/pic24_dspic/tn_arch_pic24_bfa.h File Reference

21.4.1 Detailed Description

Atomic bit-field access macros for PIC24/dsPIC.

Initially, the code was taken from the article by Alex Borisov (russian), and modified a bit.

The kernel would not probably provide that kind of functionality, but the kernel itself needs it, so, it is made public so
that application can use it too.

Macros

• #define TN_BFA_SET 0x1111

Command for TN_BFA() macro: Set bits in the bit field by mask; ... macro param should be set to the bit mask
to set.

• #define TN_BFA_CLR 0x2222

Command for TN_BFA() macro: Clear bits in the bit field by mask; ... macro param should be set to the bit mask
to clear.

• #define TN_BFA_INV 0x3333

Command for TN_BFA() macro: Invert bits in the bit field by mask; ... macro param should be set to the bit mask
to invert.

• #define TN_BFA_WR 0xAAAA

Command for TN_BFA() macro: Write bit field; ... macro param should be set to the value to write.

• #define TN_BFA_RD 0xBBBB

Command for TN_BFA() macro: Read bit field; ... macro param ignored.

• #define TN_BFA(comm, reg_name, field_name, ...)

Macro for atomic access to the structure bit field.

• #define TN_BFAR(comm, reg_name, lower, upper, ...)

Macro for atomic access to the structure bit field specified as a range.

Generated by Doxygen

http://www.pic24.ru/doku.php/articles/mchp/c30_atomic_access

21.4 arch/pic24_dspic/tn_arch_pic24_bfa.h File Reference 87

21.4.2 Macro Definition Documentation

21.4.2.1 TN_BFA

#define TN_BFA(

comm,

reg_name,

field_name,

...)

Macro for atomic access to the structure bit field.

The BFA acronym means Bit Field Access.

Parameters

comm command to execute:

• #TN_BFA_WR - write bit field

• #TN_BFA_RD - read bit field

• #TN_BFA_SET - set bits by mask

• #TN_BFA_CLR - clear bits by mask

• #TN_BFA_INV - invert bits by mask

reg_name register name (PORTA, CMCON, ...).

field_name structure field name
... used if only comm != #TN_BFA_RD. Meaning depends on the comm, see comments for

specific command: #TN_BFA_WR, etc.

Usage examples:
int a = 0x02;
//-- Set third bit of the INT0IP field in the IPC0 register:
// IPC0bits.INT0IP |= (1 « 2);
TN_BFA(TN_BFA_SET, IPC0, INT0IP, (1 « 2));
//-- Clear second bit of the INT0IP field in the IPC0 register:
// IPC0bits.INT0IP &= ~(1 « 1);
TN_BFA(TN_BFA_CLR, IPC0, INT0IP, (1 « 1));
//-- Invert two less-significant bits of the INT0IP field
// in the IPC0 register:
// IPC0bits.INT0IP ^= 0x03;
TN_BFA(TN_BFA_INV, IPC0, INT0IP, 0x03);
//-- Write value 0x05 to the INT0IP field of the IPC0 register:
// IPC0bits.INT0IP = 0x05;
TN_BFA(TN_BFA_WR, IPC0, INT0IP, 0x05);
//-- Write value of the variable a to the INT0IP field of the IPC0
// register:
// IPC0bits.INT0IP = a;
TN_BFA(TN_BFA_WR, IPC0, INT0IP, a);
//-- Read the value that is stored in the INT0IP field of the IPC0
// register, to the int variable a:
// int a = IPC0bits.INT0IP;
a = TN_BFA(TN_BFA_RD, IPC0, INT0IP);

Definition at line 154 of file tn_arch_pic24_bfa.h.

Generated by Doxygen

88 File Documentation

21.4.2.2 TN_BFAR

#define TN_BFAR(

comm,

reg_name,

lower,

upper,

...)

Macro for atomic access to the structure bit field specified as a range.

Parameters

comm command to execute:

• #TN_BFA_WR - write bit field

• #TN_BFA_RD - read bit field

• #TN_BFA_SET - set bits by mask

• #TN_BFA_CLR - clear bits by mask

• #TN_BFA_INV - invert bits by mask

reg_name variable name (PORTA, CMCON, ...). Variable should be in the near memory (first 8 KB)

lower number of lowest affected bit of the field
upper number of highest affected bit of the field

... used if only comm != #TN_BFA_RD. Meaning depends on the comm, see comments for
specific command: #TN_BFA_WR, etc.

Usage examples:
int a = 0x02;
//-- Write constant 0xaa to the least significant byte of the TRISB
// register:
TN_BFAR(TN_BFA_WR, TRISB, 0, 7, 0xaa);
//-- Invert least significant nibble of the most significant byte
// in the register TRISB:
TN_BFAR(TN_BFA_INV, TRISB, 8, 15, 0x0f);
//-- Get 5 least significant bits from the register TRISB and store
// result to the variable a
a = TN_BFAR(TN_BFA_RD, TRISB, 0, 4);

Definition at line 270 of file tn_arch_pic24_bfa.h.

21.5 arch/pic32/tn_arch_pic32.h File Reference

21.5.1 Detailed Description

PIC32 architecture-dependent routines

Macros

• #define tn_p32_soft_isr(vec)

Interrupt handler wrapper macro for software context saving.

• #define tn_p32_srs_isr(vec)

Generated by Doxygen

21.5 arch/pic32/tn_arch_pic32.h File Reference 89

Interrupt handler wrapper macro for shadow register context saving.

• #define tn_soft_isr tn_p32_soft_isr

For compatibility with old projects, old name of tn_p32_soft_isr() macro is kept; please don't use it in new
code.

• #define tn_srs_isr tn_p32_srs_isr

For compatibility with old projects, old name of tn_p32_srs_isr() macro is kept; please don't use it in new code.

Variables

• volatile int tn_p32_int_nest_count

current interrupt nesting count.

• void ∗ tn_p32_user_sp

saved task stack pointer.

• void ∗ tn_p32_int_sp

saved ISR stack pointer.

21.5.2 Macro Definition Documentation

21.5.2.1 tn_p32_soft_isr

#define tn_p32_soft_isr(

vec)

Interrupt handler wrapper macro for software context saving.

Usage looks like the following:

tn_p32_soft_isr(_TIMER_1_VECTOR)
{

INTClearFlag(INT_T1);

//-- do something useful
}

Note that you should not use __ISR(_TIMER_1_VECTOR) macro for that.

Parameters

vec interrupt vector number, such as _TIMER_1_VECTOR, etc.

Definition at line 344 of file tn_arch_pic32.h.

21.5.2.2 tn_p32_srs_isr

#define tn_p32_srs_isr(

vec)

Generated by Doxygen

90 File Documentation

Interrupt handler wrapper macro for shadow register context saving.

Usage looks like the following:

tn_p32_srs_isr(_INT_UART_1_VECTOR)
{

INTClearFlag(INT_U1);

//-- do something useful
}

Note that you should not use __ISR(_INT_UART_1_VECTOR) macro for that.

Parameters

vec interrupt vector number, such as _TIMER_1_VECTOR, etc.

Definition at line 493 of file tn_arch_pic32.h.

21.5.3 Variable Documentation

21.5.3.1 tn_p32_int_nest_count

volatile int tn_p32_int_nest_count

current interrupt nesting count.

Used by macros tn_p32_soft_isr() and tn_p32_srs_isr().

21.5.3.2 tn_p32_user_sp

void∗ tn_p32_user_sp

saved task stack pointer.

Needed when switching stack pointer from task stack to interrupt stack.

21.5.3.3 tn_p32_int_sp

void∗ tn_p32_int_sp

saved ISR stack pointer.

Needed when switching stack pointer from interrupt stack to task stack.

Generated by Doxygen

21.6 arch/pic32/tn_arch_pic32_bfa.h File Reference 91

21.6 arch/pic32/tn_arch_pic32_bfa.h File Reference

21.6.1 Detailed Description

Atomic bit-field access macros for PIC24/dsPIC.

Initially, the code was taken from the article by Alex Borisov (russian), and modified a bit.

The kernel would not probably provide that kind of functionality, but the kernel itself needs it, so, it is made public so
that application can use it too.

Macros

• #define TN_BFA_SET 0x1111

Command for TN_BFA() macro: Set bits in the bit field by mask; ... macro param should be set to the bit mask
to set.

• #define TN_BFA_CLR 0x2222

Command for TN_BFA() macro: Clear bits in the bit field by mask; ... macro param should be set to the bit mask
to clear.

• #define TN_BFA_INV 0x3333

Command for TN_BFA() macro: Invert bits in the bit field by mask; ... macro param should be set to the bit mask
to invert.

• #define TN_BFA_WR 0xAAAA

Command for TN_BFA() macro: Write bit field; ... macro param should be set to the value to write.

• #define TN_BFA_RD 0xBBBB

Command for TN_BFA() macro: Read bit field; ... macro param ignored.

• #define TN_BFA(comm, reg_name, field_name, ...)

Macro for atomic access to the structure bit field.

• #define TN_BFAR(comm, reg_name, lower, upper, ...)

Macro for atomic access to the structure bit field specified as a range.

21.6.2 Macro Definition Documentation

21.6.2.1 TN_BFA

#define TN_BFA(

comm,

reg_name,

field_name,

...)

Macro for atomic access to the structure bit field.

The BFA acronym means Bit Field Access.

Generated by Doxygen

http://www.pic24.ru/doku.php/articles/mchp/c30_atomic_access

92 File Documentation

Parameters

comm command to execute:

• #TN_BFA_WR - write bit field

• #TN_BFA_RD - read bit field

• #TN_BFA_SET - set bits by mask

• #TN_BFA_CLR - clear bits by mask

• #TN_BFA_INV - invert bits by mask

reg_name register name (PORTA, CMCON, ...).

field_name structure field name
... used if only comm != #TN_BFA_RD. Meaning depends on the comm, see comments for

specific command: #TN_BFA_WR, etc.

Usage examples:
int a = 0x02;
//-- Set third bit of the INT0IP field in the IPC0 register:
// IPC0bits.INT0IP |= (1 « 2);
TN_BFA(TN_BFA_SET, IPC0, INT0IP, (1 « 2));
//-- Clear second bit of the INT0IP field in the IPC0 register:
// IPC0bits.INT0IP &= ~(1 « 1);
TN_BFA(TN_BFA_CLR, IPC0, INT0IP, (1 « 1));
//-- Invert two less-significant bits of the INT0IP field
// in the IPC0 register:
// IPC0bits.INT0IP ^= 0x03;
TN_BFA(TN_BFA_INV, IPC0, INT0IP, 0x03);
//-- Write value 0x05 to the INT0IP field of the IPC0 register:
// IPC0bits.INT0IP = 0x05;
TN_BFA(TN_BFA_WR, IPC0, INT0IP, 0x05);
//-- Write value of the variable a to the INT0IP field of the IPC0
// register:
// IPC0bits.INT0IP = a;
TN_BFA(TN_BFA_WR, IPC0, INT0IP, a);
//-- Read the value that is stored in the INT0IP field of the IPC0
// register, to the int variable a:
// int a = IPC0bits.INT0IP;
a = TN_BFA(TN_BFA_RD, IPC0, INT0IP);

Definition at line 154 of file tn_arch_pic32_bfa.h.

21.6.2.2 TN_BFAR

#define TN_BFAR(

comm,

reg_name,

lower,

upper,

...)

Macro for atomic access to the structure bit field specified as a range.

Generated by Doxygen

21.7 arch/tn_arch.h File Reference 93

Parameters

comm command to execute:

• #TN_BFA_WR - write bit field

• #TN_BFA_RD - read bit field

• #TN_BFA_SET - set bits by mask

• #TN_BFA_CLR - clear bits by mask

• #TN_BFA_INV - invert bits by mask

reg_name variable name (PORTA, CMCON, ...). Variable should be in the near memory (first 8 KB)

lower number of lowest affected bit of the field
upper number of highest affected bit of the field

... used if only comm != #TN_BFA_RD. Meaning depends on the comm, see comments for
specific command: #TN_BFA_WR, etc.

Usage examples:
int a = 0x02;
//-- Write constant 0xaa to the least significant byte of the TRISB
// register:
TN_BFAR(TN_BFA_WR, TRISB, 0, 7, 0xaa);
//-- Invert least significant nibble of the most significant byte
// in the register TRISB:
TN_BFAR(TN_BFA_INV, TRISB, 8, 15, 0x0f);
//-- Get 5 least significant bits from the register TRISB and store
// result to the variable a
a = TN_BFAR(TN_BFA_RD, TRISB, 0, 4);

Definition at line 268 of file tn_arch_pic32_bfa.h.

21.7 arch/tn_arch.h File Reference

21.7.1 Detailed Description

Architecture-dependent routines declaration.

Functions

• void tn_arch_int_dis (void)

Unconditionally disable system interrupts.

• void tn_arch_int_en (void)

Unconditionally enable interrupts.

• TN_UWord tn_arch_sr_save_int_dis (void)

Disable system interrupts and return previous value of status register, atomically.

• void tn_arch_sr_restore (TN_UWord sr)

Restore previously saved status register.

• TN_UWord tn_arch_sched_dis_save (void)

Disable kernel scheduler and return previous state.

• void tn_arch_sched_restore (TN_UWord sched_state)

Restore state of the kernel scheduler.

Generated by Doxygen

94 File Documentation

• TN_UWord ∗ _tn_arch_stack_init (TN_TaskBody ∗task_func, TN_UWord ∗stack_low_addr, TN_UWord
∗stack_high_addr, void ∗param)

Should put initial CPU context to the provided stack pointer for new task and return current stack pointer.
• int _tn_arch_inside_isr (void)

Should return 1 if system ISR is currently running, 0 otherwise.
• int _tn_arch_is_int_disabled (void)

Should return 1 if system interrupts are currently disabled, 0 otherwise.
• void _tn_arch_context_switch_pend (void)

Called whenever we need to switch context from one task to another.
• void _tn_arch_context_switch_now_nosave (void)

Called whenever we need to switch context to new task, but don't save current context.
• void _tn_arch_sys_start (TN_UWord ∗int_stack, TN_UWord int_stack_size)

Performs first context switch to the first task (_tn_next_task_to_run is already set to needed task).

21.7.2 Function Documentation

21.7.2.1 tn_arch_int_dis()

void tn_arch_int_dis (

void)

Unconditionally disable system interrupts.

Refer to the section Interrupt types for details on what is system interrupt.

21.7.2.2 tn_arch_int_en()

void tn_arch_int_en (

void)

Unconditionally enable interrupts.

Refer to the section Interrupt types for details on what is system interrupt.

21.7.2.3 tn_arch_sr_save_int_dis()

TN_UWord tn_arch_sr_save_int_dis (

void)

Disable system interrupts and return previous value of status register, atomically.

Refer to the section Interrupt types for details on what is system interrupt.

See also

tn_arch_sr_restore()

21.7.2.4 tn_arch_sr_restore()

void tn_arch_sr_restore (

TN_UWord sr)

Restore previously saved status register.

Generated by Doxygen

21.7 arch/tn_arch.h File Reference 95

Parameters

sr status register value previously from tn_arch_sr_save_int_dis()

See also

tn_arch_sr_save_int_dis()

21.7.2.5 tn_arch_sched_dis_save()

TN_UWord tn_arch_sched_dis_save (

void)

Disable kernel scheduler and return previous state.

Returns

Scheduler state to be restored later by #tn_arch_sched_restore().

21.7.2.6 tn_arch_sched_restore()

void tn_arch_sched_restore (

TN_UWord sched_state)

Restore state of the kernel scheduler.

See #tn_arch_sched_dis_save().

Parameters

sched_state Value returned from #tn_arch_sched_dis_save()

21.7.2.7 _tn_arch_stack_init()

TN_UWord∗ _tn_arch_stack_init (

TN_TaskBody ∗ task_func,

TN_UWord ∗ stack_low_addr,

TN_UWord ∗ stack_high_addr,

void ∗ param)

Should put initial CPU context to the provided stack pointer for new task and return current stack pointer.

When resulting context gets restored by _tn_arch_context_switch_now_nosave() or _tn_arch_context_switch_pend(),
the following conditions should be met:

Generated by Doxygen

96 File Documentation

• Interrupts are enabled;

• Return address is set to tn_task_exit(), so that when task body function returns, tn_task_exit()
gets automatially called;

• Argument 0 contains param pointer

Parameters

task_func Pointer to task body function.

stack_low_addr Lowest address of the stack, independently of the architecture stack implementation

stack_high_addr Highest address of the stack, independently of the architecture stack implementation

param User-provided parameter for task body function.

Returns

current stack pointer (top of the stack)

21.7.2.8 _tn_arch_inside_isr()

int _tn_arch_inside_isr (

void)

Should return 1 if system ISR is currently running, 0 otherwise.

Refer to the section Interrupt types for details on what is system ISR.

21.7.2.9 _tn_arch_is_int_disabled()

int _tn_arch_is_int_disabled (

void)

Should return 1 if system interrupts are currently disabled, 0 otherwise.

Refer to the section Interrupt types for details on what is system interrupt.

21.7.2.10 _tn_arch_context_switch_pend()

void _tn_arch_context_switch_pend (

void)

Called whenever we need to switch context from one task to another.

This function typically does NOT switch context; it merely pends it, that is, it sets appropriate interrupt flag. If current
level is an application level, interrupt is fired immediately, and context gets switched. Otherwise (if some ISR is
currently running), context switch keeps pending until all ISR return.

Preconditions:

Generated by Doxygen

21.7 arch/tn_arch.h File Reference 97

• interrupts are enabled;

• _tn_curr_run_task points to currently running (preempted) task;

• _tn_next_task_to_run points to new task to run.

Actions to perform in actual context switching routine:

• save context of the preempted task to its stack;

• if preprocessor macro #_TN_ON_CONTEXT_SWITCH_HANDLER is non-zero, call _tn_sys_on_←↩

context_switch(_tn_curr_run_task, _tn_next_task_to_run);.

• set _tn_curr_run_task to _tn_next_task_to_run;

• restore context of the newly activated task from its stack.

See also

_tn_curr_run_task

_tn_next_task_to_run

21.7.2.11 _tn_arch_context_switch_now_nosave()

void _tn_arch_context_switch_now_nosave (

void)

Called whenever we need to switch context to new task, but don't save current context.

This happens:

• At system start, inside tn_sys_start() (well, it is actually called indirectly but from _tn_arch_sys_start());

• At task exit, inside tn_task_exit().

This function doesn't need to pend context switch, it switches context immediately.

Preconditions:

• interrupts are disabled;

• _tn_next_task_to_run is already set to needed task.

Actions to perform:

• if preprocessor macro #_TN_ON_CONTEXT_SWITCH_HANDLER is non-zero, call _tn_sys_on_←↩

context_switch(_tn_curr_run_task, _tn_next_task_to_run);.

• set _tn_curr_run_task to _tn_next_task_to_run;

• restore context of the newly activated task from its stack.

See also

_tn_curr_run_task

_tn_next_task_to_run

Generated by Doxygen

98 File Documentation

21.7.2.12 _tn_arch_sys_start()

void _tn_arch_sys_start (

TN_UWord ∗ int_stack,

TN_UWord int_stack_size)

Performs first context switch to the first task (_tn_next_task_to_run is already set to needed task).

Typically, this function just calls _tn_arch_context_switch_now_nosave(), but it also can perform any
architecture-dependent actions first, if needed.

21.8 core/tn_cfg_dispatch.h File Reference

21.8.1 Detailed Description

Dispatch configuration: set predefined options, include user-provided cfg file as well as default cfg file.

Macros

• #define TN_API_MAKE_ALIG_ARG__TYPE 1

In this case, you should use macro like this: #TN_MAKE_ALIG(struct my_struct).

• #define TN_API_MAKE_ALIG_ARG__SIZE 2

In this case, you should use macro like this: #TN_MAKE_ALIG(sizeof(struct my_struct)).

• #define _TN_ON_CONTEXT_SWITCH_HANDLER 1

Internal kernel definition: set to non-zero if _tn_sys_on_context_switch() should be called on context
switch.

• #define _TN_STACK_OVERFLOW_SIZE_ADD (TN_STACK_OVERFLOW_CHECK ? 1 : 0)

If #TN_STACK_OVERFLOW_CHECK is set, we have 1-word overhead for each task stack.

21.8.2 Macro Definition Documentation

21.8.2.1 TN_API_MAKE_ALIG_ARG__TYPE

#define TN_API_MAKE_ALIG_ARG__TYPE 1

In this case, you should use macro like this: #TN_MAKE_ALIG(struct my_struct).

This way is used in the majority of TNKernel ports. (actually, in all ports except the one by AlexB)

Definition at line 56 of file tn_cfg_dispatch.h.

Generated by Doxygen

21.9 core/tn_common.h File Reference 99

21.8.2.2 TN_API_MAKE_ALIG_ARG__SIZE

#define TN_API_MAKE_ALIG_ARG__SIZE 2

In this case, you should use macro like this: #TN_MAKE_ALIG(sizeof(struct my_struct)).

This way is stated in TNKernel docs and used in the port for dsPIC/PIC24/PIC32 by AlexB.

Definition at line 63 of file tn_cfg_dispatch.h.

21.9 core/tn_common.h File Reference

21.9.1 Detailed Description

Definitions used through the whole kernel.

Macros

• #define TN_NULL ((void ∗)0)

NULL pointer definition.
• #define TN_BOOL int

boolean type definition
• #define TN_TRUE (1 == 1)

true value definition for type #TN_BOOL
• #define TN_FALSE (1 == 0)

false value definition for type #TN_BOOL
• #define TN_MAKE_ALIG_SIZE(a) (((a) + (sizeof(TN_UWord) - 1)) & (∼(sizeof(TN_UWord) - 1)))

Macro for making a number a multiple of sizeof(#TN_UWord), should be used with fixed memory block pool.
• #define _TN_UNUSED(x) (void)(x)

The same as #TN_MAKE_ALIG_SIZE but its behavior depends on the option #TN_API_MAKE_ALIG_ARG
• #define _TN_FATAL_ERROR(error_msg) _TN_FATAL_ERRORF(error_msg, NULL)

Typedefs

• typedef void() TN_TaskBody(void ∗param)

Prototype for task body function.
• typedef unsigned long TN_TickCnt

Type for system tick count, it is used by the kernel to represent absolute tick count value as well as relative timeouts.

Enumerations

• enum TN_ObjId {
TN_ID_NONE = (int)0x0, TN_ID_TASK = (int)0x47ABCF69, TN_ID_SEMAPHORE = (int)0x6FA173EB,
TN_ID_EVENTGRP = (int)0x5E224F25,
TN_ID_DATAQUEUE = (int)0x0C8A6C89, TN_ID_FSMEMORYPOOL = (int)0x26B7CE8B, TN_ID_MUTEX
= (int)0x17129E45, TN_ID_TIMER = (int)0x1A937FBC,
TN_ID_EXCHANGE = (int)0x32b7c072, TN_ID_EXCHANGE_LINK = (int)0x24d36f35 }

Magic number for object validity verification.
• enum TN_RCode {

TN_RC_OK = 0, TN_RC_TIMEOUT = -1, TN_RC_OVERFLOW = -2, TN_RC_WCONTEXT = -3,
TN_RC_WSTATE = -4, TN_RC_WPARAM = -5, TN_RC_ILLEGAL_USE = -6, TN_RC_INVALID_OBJ = -7,
TN_RC_DELETED = -8, TN_RC_FORCED = -9, TN_RC_INTERNAL = -10 }

Result code returned by kernel services.

Generated by Doxygen

100 File Documentation

21.9.2 Macro Definition Documentation

21.9.2.1 TN_MAKE_ALIG_SIZE

#define TN_MAKE_ALIG_SIZE(

a) (((a) + (sizeof(TN_UWord) - 1)) & (∼(sizeof(TN_UWord) - 1)))

Macro for making a number a multiple of sizeof(#TN_UWord), should be used with fixed memory block pool.

See tn_fmem_create() for usage example.

Definition at line 231 of file tn_common.h.

21.9.2.2 _TN_UNUSED

#define _TN_UNUSED(

x) (void)(x)

The same as #TN_MAKE_ALIG_SIZE but its behavior depends on the option #TN_API_MAKE_ALIG_ARG

Attention

it is recommended to use #TN_MAKE_ALIG_SIZE macro instead of this one, in order to avoid confusion
caused by various TNKernel ports: refer to the section Macro MAKE_ALIG() for details. Suppresses "unused"
compiler warning for some particular symbol

Definition at line 263 of file tn_common.h.

21.9.3 Typedef Documentation

Generated by Doxygen

21.9 core/tn_common.h File Reference 101

21.9.3.1 TN_TickCnt

typedef unsigned long TN_TickCnt

Type for system tick count, it is used by the kernel to represent absolute tick count value as well as relative timeouts.

When it is used as a timeout value, it represents the maximum number of system ticks to wait.

Assume user called some system function, and it can't perform its job immediately (say, it needs to lock mutex but
it is already locked, etc).

So, function can wait or return an error. There are possible timeout values and appropriate behavior of the
function:

• timeout is set to 0: function doesn't wait at all, no context switch is performed, #TN_RC_TIMEOUT is
returned immediately.

• timeout is set to #TN_WAIT_INFINITE: function waits until it eventually can perform its job. Timeout is
not taken in account, so #TN_RC_TIMEOUT is never returned.

• timeout is set to other value: function waits at most specified number of system ticks. Strictly speak-
ing, it waits from (timeout - 1) to timeout ticks. So, if you specify that timeout is 1, be aware
that it might actually don't wait at all: if system timer interrupt happens just while function is putting task
to wait (with interrupts disabled), then ISR will be executed right after function puts task to wait. Then
tn_tick_int_processing() will immediately remove the task from wait queue and make it runnable
again.

So, to guarantee that task waits at least 1 system tick, you should specify timeout value of 2.

Note also that there are other possible ways to make task runnable:

• if task waits because of call to tn_task_sleep(), it may be woken up by some other task, by means of
tn_task_wakeup(). In this case, tn_task_sleep() returns #TN_RC_OK.

• independently of the wait reason, task may be released from wait forcibly, by means of tn_task_release_wait().
It this case, #TN_RC_FORCED is returned by the waiting function. (the usage of the tn_task_release_wait()
function is discouraged though)

Definition at line 188 of file tn_common.h.

21.9.4 Enumeration Type Documentation

21.9.4.1 TN_ObjId

enum TN_ObjId

Magic number for object validity verification.

Generated by Doxygen

102 File Documentation

Enumerator

TN_ID_NONE id for invalid object

TN_ID_TASK id for tasks
TN_ID_SEMAPHORE id for semaphores

TN_ID_EVENTGRP id for event groups

TN_ID_DATAQUEUE id for data queues

TN_ID_FSMEMORYPOOL id for fixed memory pools

TN_ID_MUTEX id for mutexes
TN_ID_TIMER id for timers

TN_ID_EXCHANGE id for exchange objects

TN_ID_EXCHANGE_LINK id for exchange link

Definition at line 65 of file tn_common.h.

21.9.4.2 TN_RCode

enum TN_RCode

Result code returned by kernel services.

Enumerator

TN_RC_OK Successful operation.

TN_RC_TIMEOUT Timeout (consult #TN_TickCnt for details).

See also

#TN_TickCnt

TN_RC_OVERFLOW This code is returned in the following cases:

• Trying to increment semaphore count more than its max count;

• Trying to return extra memory block to fixed memory pool.

See also

tn_sem.h

tn_fmem.h

TN_RC_WCONTEXT Wrong context error: returned if function is called from non-acceptable context.
Required context suggested for every function by badges:

• - function can be called from task;

• - function can be called from ISR.

See also

tn_sys_context_get()

enum #TN_Context

Generated by Doxygen

21.10 core/tn_common_macros.h File Reference 103

Enumerator

TN_RC_WSTATE Wrong task state error: requested operation requires different task state.

TN_RC_WPARAM This code is returned by most of the kernel functions when wrong params were
given to function. This error code can be returned if only build-time option
#TN_CHECK_PARAM is non-zero

See also

#TN_CHECK_PARAM

TN_RC_ILLEGAL_USE Illegal usage. Returned in the following cases:

• task tries to unlock or delete the mutex that is locked by different task,

• task tries to lock mutex with priority ceiling whose priority is lower than task's
priority

See also

tn_mutex.h

TN_RC_INVALID_OBJ Returned when user tries to perform some operation on invalid object (mutex,
semaphore, etc). Object validity is checked by comparing special id_... field
value with the value from enum #TN_ObjId

See also

#TN_CHECK_PARAM

TN_RC_DELETED Object for whose event task was waiting is deleted.

TN_RC_FORCED Task was released from waiting forcibly because some other task called
tn_task_release_wait()

TN_RC_INTERNAL Internal kernel error, should never be returned by kernel services. If it is returned,
it's a bug in the kernel.

Definition at line 81 of file tn_common.h.

21.10 core/tn_common_macros.h File Reference

21.10.1 Detailed Description

Macros that may be useful for any part of the kernel. Note: only preprocessor macros allowed here, so that the file
can be included in any source file (C, assembler, or whatever)

Macros

• #define _TN_STRINGIFY_LITERAL(x) #x

Macro that expands to string representation of its argument: for example,.

• #define _TN_STRINGIFY_MACRO(x) _TN_STRINGIFY_LITERAL(x)

Macro that expands to string representation of its argument, which is allowed to be a macro: for example,.

21.10.2 Macro Definition Documentation

Generated by Doxygen

104 File Documentation

21.10.2.1 _TN_STRINGIFY_LITERAL

#define _TN_STRINGIFY_LITERAL(

x) #x

Macro that expands to string representation of its argument: for example,.
_TN_STRINGIFY_LITERAL(5)

expands to:
"5"

See also _TN_STRINGIFY_MACRO()

Definition at line 70 of file tn_common_macros.h.

21.10.2.2 _TN_STRINGIFY_MACRO

#define _TN_STRINGIFY_MACRO(

x) _TN_STRINGIFY_LITERAL(x)

Macro that expands to string representation of its argument, which is allowed to be a macro: for example,.
#define MY_VALUE 10
_TN_STRINGIFY_MACRO(MY_VALUE)

expands to:
"10"

Definition at line 88 of file tn_common_macros.h.

21.11 core/tn_dqueue.h File Reference

21.11.1 Detailed Description

A data queue is a FIFO that stores pointer (of type void ∗) in each cell, called (in uITRON style) a data element.
A data queue also has an associated wait queue each for sending (wait_send queue) and for receiving (wait←↩

_receive queue). A task that sends a data element tries to put the data element into the FIFO. If there is no
space left in the FIFO, the task is switched to the waiting state and placed in the data queue's wait_send queue
until space appears (another task gets a data element from the data queue).

A task that receives a data element tries to get a data element from the FIFO. If the FIFO is empty (there is no data
in the data queue), the task is switched to the waiting state and placed in the data queue's wait_receive queue
until data element arrive (another task puts some data element into the data queue). To use a data queue just for
the synchronous message passing, set size of the FIFO to 0. The data element to be sent and received can be
interpreted as a pointer or an integer and may have value 0 (TN_NULL).

For the useful pattern on how to use queue together with fixed memory pool, refer to the example←↩

: examples/queue. Be sure to examine the readme there.

TNeo offers a way to wait for a message from multiple queues in just a single call, refer to the section
Connecting an event group to other system objects for details. Related queue services:

• tn_queue_eventgrp_connect()

• tn_queue_eventgrp_disconnect()

There is an example project available that demonstrates event group connection technique: examples/queue←↩

_eventgrp_conn. Be sure to examine the readme there.

Generated by Doxygen

21.11 core/tn_dqueue.h File Reference 105

Data Structures

• struct TN_DQueue

Structure representing data queue object.
• struct TN_DQueueTaskWait

DQueue-specific fields related to waiting task, to be included in struct TN_Task.

Functions

• enum TN_RCode tn_queue_create (struct TN_DQueue ∗dque, void ∗∗data_fifo, int items_cnt)

Construct data queue.
• enum TN_RCode tn_queue_delete (struct TN_DQueue ∗dque)

Destruct data queue.
• enum TN_RCode tn_queue_send (struct TN_DQueue ∗dque, void ∗p_data, TN_TickCnt timeout)

Send the data element specified by the p_data to the data queue specified by the dque.
• enum TN_RCode tn_queue_send_polling (struct TN_DQueue ∗dque, void ∗p_data)

The same as tn_queue_send() with zero timeout.
• enum TN_RCode tn_queue_isend_polling (struct TN_DQueue ∗dque, void ∗p_data)

The same as tn_queue_send() with zero timeout, but for using in the ISR.
• enum TN_RCode tn_queue_receive (struct TN_DQueue ∗dque, void ∗∗pp_data, TN_TickCnt timeout)

Receive the data element from the data queue specified by the dque and place it into the address specified by the
pp_data.

• enum TN_RCode tn_queue_receive_polling (struct TN_DQueue ∗dque, void ∗∗pp_data)

The same as tn_queue_receive() with zero timeout.
• enum TN_RCode tn_queue_ireceive_polling (struct TN_DQueue ∗dque, void ∗∗pp_data)

The same as tn_queue_receive() with zero timeout, but for using in the ISR.
• int tn_queue_free_items_cnt_get (struct TN_DQueue ∗dque)

Returns number of free items in the queue.
• int tn_queue_used_items_cnt_get (struct TN_DQueue ∗dque)

Returns number of used (non-free) items in the queue.
• enum TN_RCode tn_queue_eventgrp_connect (struct TN_DQueue ∗dque, struct TN_EventGrp ∗eventgrp,

TN_UWord pattern)

Connect an event group to the queue.
• enum TN_RCode tn_queue_eventgrp_disconnect (struct TN_DQueue ∗dque)

Disconnect a connected event group from the queue.

21.11.2 Function Documentation

21.11.2.1 tn_queue_create()

enum TN_RCode tn_queue_create (

struct TN_DQueue ∗ dque,

void ∗∗ data_fifo,

int items_cnt)

Construct data queue.

id_dque member should not contain #TN_ID_DATAQUEUE, otherwise, #TN_RC_WPARAM is returned.

(refer to Legend for details)

Generated by Doxygen

106 File Documentation

Parameters

dque pointer to already allocated struct TN_DQueue.

data_fifo pointer to already allocated array of void ∗ to store data queue items. Can be #TN_NULL.

items_cnt capacity of queue (count of elements in the data_fifo array) Can be 0.

Returns

• #TN_RC_OK if queue was successfully created;

• If #TN_CHECK_PARAM is non-zero, additional return code is available: #TN_RC_WPARAM.

21.11.2.2 tn_queue_delete()

enum TN_RCode tn_queue_delete (

struct TN_DQueue ∗ dque)

Destruct data queue.

All tasks that wait for writing to or reading from the queue become runnable with #TN_RC_DELETED code returned.

(refer to Legend for details)

Parameters

dque pointer to data queue to be deleted

Returns

• #TN_RC_OK if queue was successfully deleted;

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.11.2.3 tn_queue_send()

enum TN_RCode tn_queue_send (

struct TN_DQueue ∗ dque,

void ∗ p_data,

TN_TickCnt timeout)

Send the data element specified by the p_data to the data queue specified by the dque.

If there are tasks in the data queue's wait_receive list already, the function releases the task from the head
of the wait_receive list, makes this task runnable and transfers the parameter p_data to task's function, that
caused it to wait.

Generated by Doxygen

21.11 core/tn_dqueue.h File Reference 107

If there are no tasks in the data queue's wait_receive list, parameter p_data is placed to the tail of data FIFO.
If the data FIFO is full, behavior depends on the timeout value: refer to #TN_TickCnt.

(refer to Legend for details)

Generated by Doxygen

108 File Documentation

Parameters

dque pointer to data queue to send data to

p_data value to send

timeout refer to #TN_TickCnt

Returns

• #TN_RC_OK if data was successfully sent;

• #TN_RC_WCONTEXT if called from wrong context;

• Other possible return codes depend on timeout value, refer to #TN_TickCnt

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

See also

#TN_TickCnt

21.11.2.4 tn_queue_send_polling()

enum TN_RCode tn_queue_send_polling (

struct TN_DQueue ∗ dque,

void ∗ p_data)

The same as tn_queue_send() with zero timeout.

(refer to Legend for details)

21.11.2.5 tn_queue_isend_polling()

enum TN_RCode tn_queue_isend_polling (

struct TN_DQueue ∗ dque,

void ∗ p_data)

The same as tn_queue_send() with zero timeout, but for using in the ISR.

(refer to Legend for details)

Generated by Doxygen

21.11 core/tn_dqueue.h File Reference 109

21.11.2.6 tn_queue_receive()

enum TN_RCode tn_queue_receive (

struct TN_DQueue ∗ dque,

void ∗∗ pp_data,

TN_TickCnt timeout)

Receive the data element from the data queue specified by the dque and place it into the address specified by the
pp_data.

If the FIFO already has data, function removes an entry from the end of the data queue FIFO and returns it into the
pp_data function parameter.

If there are task(s) in the data queue's wait_send list, first one gets removed from the head of wait_send
list, becomes runnable and puts the data entry, stored in this task, to the tail of data FIFO. If there are no entries
in the data FIFO and there are no tasks in the wait_send list, behavior depends on the timeout value: refer to
#TN_TickCnt.

(refer to Legend for details)

Parameters

dque pointer to data queue to receive data from

pp_data pointer to location to store the value

timeout refer to #TN_TickCnt

Returns

• #TN_RC_OK if data was successfully received;

• #TN_RC_WCONTEXT if called from wrong context;

• Other possible return codes depend on timeout value, refer to #TN_TickCnt

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

See also

#TN_TickCnt

21.11.2.7 tn_queue_receive_polling()

enum TN_RCode tn_queue_receive_polling (

struct TN_DQueue ∗ dque,

void ∗∗ pp_data)

The same as tn_queue_receive() with zero timeout.

(refer to Legend for details)

Generated by Doxygen

110 File Documentation

21.11.2.8 tn_queue_ireceive_polling()

enum TN_RCode tn_queue_ireceive_polling (

struct TN_DQueue ∗ dque,

void ∗∗ pp_data)

The same as tn_queue_receive() with zero timeout, but for using in the ISR.

(refer to Legend for details)

21.11.2.9 tn_queue_free_items_cnt_get()

int tn_queue_free_items_cnt_get (

struct TN_DQueue ∗ dque)

Returns number of free items in the queue.

(refer to Legend for details)

Parameters

dque Pointer to queue.

Returns

Number of free items in the queue, or -1 if wrong params were given (the check is performed if only #TN_←↩

CHECK_PARAM is non-zero)

21.11.2.10 tn_queue_used_items_cnt_get()

int tn_queue_used_items_cnt_get (

struct TN_DQueue ∗ dque)

Returns number of used (non-free) items in the queue.

(refer to Legend for details)

Parameters

dque Pointer to queue.

Returns

Number of used (non-free) items in the queue, or -1 if wrong params were given (the check is performed if
only #TN_CHECK_PARAM is non-zero)

Generated by Doxygen

21.12 core/tn_eventgrp.h File Reference 111

21.11.2.11 tn_queue_eventgrp_connect()

enum TN_RCode tn_queue_eventgrp_connect (

struct TN_DQueue ∗ dque,

struct TN_EventGrp ∗ eventgrp,

TN_UWord pattern)

Connect an event group to the queue.

Refer to the section Connecting an event group to other system objects for details.

Only one event group can be connected to the queue at a time. If you connect event group while another event
group is already connected, the old link is discarded.

Parameters

dque queue to which event group should be connected

eventgrp event groupt to connect

pattern flags pattern that should be managed by the queue automatically

(refer to Legend for details)

21.11.2.12 tn_queue_eventgrp_disconnect()

enum TN_RCode tn_queue_eventgrp_disconnect (

struct TN_DQueue ∗ dque)

Disconnect a connected event group from the queue.

Refer to the section Connecting an event group to other system objects for details.

If there is no event group connected, nothing is changed.

Parameters

dque queue from which event group should be disconnected

(refer to Legend for details)

21.12 core/tn_eventgrp.h File Reference

21.12.1 Detailed Description

Event group.

An event group has an internal variable (of type #TN_UWord), which is interpreted as a bit pattern where each bit
represents an event. An event group also has a wait queue for the tasks waiting on these events. A task may set
specified bits when an event occurs and may clear specified bits when necessary.

The tasks waiting for an event(s) are placed in the event group's wait queue. An event group is a very suitable
synchronization object for cases where (for some reasons) one task has to wait for many tasks, or vice versa, many
tasks have to wait for one task.

Generated by Doxygen

112 File Documentation

21.12.2 Connecting an event group to other system objects

Sometimes task needs to wait for different system events, the most common examples are:

• wait for a message from the queue(s) plus wait for some application-dependent event (such as a flag to finish
the task, or whatever);

• wait for messages from multiple queues.

If the kernel doesn't offer a mechanism for that, programmer usually have to use polling services on these queues
and sleep for a few system ticks. Obviously, this approach has serious drawbacks: we have a lot of useless context
switches, and response for the message gets much slower. Actually, we lost the main goal of the preemptive kernel
when we use polling services like that.

TNeo offers a solution: an event group can be connected to other kernel objects, and these objects will maintain
certain flags inside that event group automatically.

So, in case of multiple queues, we can act as follows (assume we have two queues: Q1 and Q2) :

• create event group EG;

• connect EG with flag 1 to Q1;

• connect EG with flag 2 to Q2;

• when task needs to receive a message from either Q1 or Q2, it just waits for the any of flags 1 or 2 in the EG,
this is done in the single call to tn_eventgrp_wait().

• when that event happened, task checks which flag is set, and receive message from the appropriate queue.

Please note that task waiting for the event should not clear the flag manually: this flag is maintained completely by
the queue. If the queue is non-empty, the flag is set. If the queue becomes empty, the flag is cleared.

For the information on system services related to queue, refer to the queue reference.

There is an example project available that demonstrates event group connection technique: examples/queue←↩

_eventgrp_conn. Be sure to examine the readme there.

Data Structures

• struct TN_EventGrp

Event group.
• struct TN_EGrpTaskWait

EventGrp-specific fields related to waiting task, to be included in struct TN_Task.
• struct TN_EGrpLink

A link to event group: used when event group can be connected to some kernel object, such as queue.

Enumerations

• enum TN_EGrpWaitMode { TN_EVENTGRP_WMODE_OR = (1 << 0), TN_EVENTGRP_WMODE_AND =
(1 << 1), TN_EVENTGRP_WMODE_AUTOCLR = (1 << 2) }

Events waiting mode that should be given to #tn_eventgrp_wait() and friends.
• enum TN_EGrpOp { TN_EVENTGRP_OP_SET, TN_EVENTGRP_OP_CLEAR, TN_EVENTGRP_OP_TOGGLE

}

Modify operation: set, clear or toggle.
• enum TN_EGrpAttr { TN_EVENTGRP_ATTR_SINGLE = (1 << 0), TN_EVENTGRP_ATTR_MULTI = (1 <<

1), TN_EVENTGRP_ATTR_CLR = (1 << 2), TN_EVENTGRP_ATTR_NONE = (0) }

Attributes that could be given to the event group object.

Generated by Doxygen

21.12 core/tn_eventgrp.h File Reference 113

Functions

• enum TN_RCode tn_eventgrp_create_wattr (struct TN_EventGrp ∗eventgrp, enum TN_EGrpAttr attr,
TN_UWord initial_pattern)

The same as #tn_eventgrp_create(), but takes additional argument: attr.

• _TN_STATIC_INLINE enum TN_RCode tn_eventgrp_create (struct TN_EventGrp ∗eventgrp, TN_UWord
initial_pattern)

Construct event group.

• enum TN_RCode tn_eventgrp_delete (struct TN_EventGrp ∗eventgrp)

Destruct event group.

• enum TN_RCode tn_eventgrp_wait (struct TN_EventGrp ∗eventgrp, TN_UWord wait_pattern, enum
TN_EGrpWaitMode wait_mode, TN_UWord ∗p_flags_pattern, TN_TickCnt timeout)

Wait for specified event(s) in the event group.

• enum TN_RCode tn_eventgrp_wait_polling (struct TN_EventGrp ∗eventgrp, TN_UWord wait_pattern, enum
TN_EGrpWaitMode wait_mode, TN_UWord ∗p_flags_pattern)

The same as tn_eventgrp_wait() with zero timeout.

• enum TN_RCode tn_eventgrp_iwait_polling (struct TN_EventGrp ∗eventgrp, TN_UWord wait_pattern, enum
TN_EGrpWaitMode wait_mode, TN_UWord ∗p_flags_pattern)

The same as tn_eventgrp_wait() with zero timeout, but for using in the ISR.

• enum TN_RCode tn_eventgrp_modify (struct TN_EventGrp ∗eventgrp, enum TN_EGrpOp operation,
TN_UWord pattern)

Modify current events bit pattern in the event group.

• enum TN_RCode tn_eventgrp_imodify (struct TN_EventGrp ∗eventgrp, enum TN_EGrpOp operation,
TN_UWord pattern)

The same as tn_eventgrp_modify(), but for using in the ISR.

21.12.3 Enumeration Type Documentation

21.12.3.1 TN_EGrpWaitMode

enum TN_EGrpWaitMode

Events waiting mode that should be given to #tn_eventgrp_wait() and friends.

Enumerator

TN_EVENTGRP_WMODE_OR Task waits for any of the event bits from the wait_pattern to be
set in the event group. This flag is mutually exclusive with
#TN_EVENTGRP_WMODE_AND.

TN_EVENTGRP_WMODE_AND Task waits for all of the event bits from the wait_pattern to be
set in the event group. This flag is mutually exclusive with
#TN_EVENTGRP_WMODE_OR.

TN_EVENTGRP_WMODE_AUTOCLR When a task successfully ends waiting for event bit(s), these bits
get cleared atomically and automatically. Other bits stay unchanged.

Definition at line 124 of file tn_eventgrp.h.

Generated by Doxygen

114 File Documentation

21.12.3.2 TN_EGrpOp

enum TN_EGrpOp

Modify operation: set, clear or toggle.

To be used in tn_eventgrp_modify() / tn_eventgrp_imodify() functions.

Enumerator

TN_EVENTGRP_OP_SET Set flags that are set in given pattern argument. Note that this operation
can lead to the context switch, since other high-priority task(s) might wait for
the event.

TN_EVENTGRP_OP_CLEAR Clear flags that are set in the given pattern argument. This operation
can not lead to the context switch, since tasks can't wait for events to be
cleared.

TN_EVENTGRP_OP_TOGGLE Toggle flags that are set in the given pattern argument. Note that this
operation can lead to the context switch, since other high-priority task(s)
might wait for the event that was just set (if any).

Definition at line 146 of file tn_eventgrp.h.

21.12.3.3 TN_EGrpAttr

enum TN_EGrpAttr

Attributes that could be given to the event group object.

Makes sense if only #TN_OLD_EVENT_API option is non-zero; otherwise, there's just one dummy attribute
available: #TN_EVENTGRP_ATTR_NONE.

Enumerator

TN_EVENTGRP_ATTR_SINGLE

Attention

deprecated. Available if only #TN_OLD_EVENT_API option is
non-zero.

Indicates that only one task could wait for events in this event group. This
flag is mutually exclusive with #TN_EVENTGRP_ATTR_MULTI flag.

TN_EVENTGRP_ATTR_MULTI

Attention

deprecated. Available if only #TN_OLD_EVENT_API option is
non-zero.

Indicates that multiple tasks could wait for events in this event group. This
flag is mutually exclusive with #TN_EVENTGRP_ATTR_SINGLE flag.

Generated by Doxygen

21.12 core/tn_eventgrp.h File Reference 115

Enumerator

TN_EVENTGRP_ATTR_CLR

Attention

strongly deprecated. Available if only #TN_OLD_EVENT_API
option is non-zero. Use #TN_EVENTGRP_WMODE_AUTOCLR
instead.

Can be specified only in conjunction with
#TN_EVENTGRP_ATTR_SINGLE flag. Indicates that ALL flags in this
event group should be cleared when task successfully waits for any event
in it.
This actually makes little sense to clear ALL events, but this is what
compatibility mode is for (see #TN_OLD_EVENT_API)

TN_EVENTGRP_ATTR_NONE Dummy attribute that does not change anything. It is needed only for the
assistance of the events compatibility mode (see
#TN_OLD_EVENT_API)

Definition at line 171 of file tn_eventgrp.h.

21.12.4 Function Documentation

21.12.4.1 tn_eventgrp_create_wattr()

enum TN_RCode tn_eventgrp_create_wattr (

struct TN_EventGrp ∗ eventgrp,

enum TN_EGrpAttr attr,

TN_UWord initial_pattern)

The same as #tn_eventgrp_create(), but takes additional argument: attr.

It makes sense if only #TN_OLD_EVENT_API option is non-zero.

Parameters

eventgrp Pointer to already allocated struct TN_EventGrp

attr
Attributes for that particular event group object, see struct #TN_EGrpAttr

initial_pattern Initial events pattern.

21.12.4.2 tn_eventgrp_create()

_TN_STATIC_INLINE enum TN_RCode tn_eventgrp_create (

struct TN_EventGrp ∗ eventgrp,

TN_UWord initial_pattern)

Generated by Doxygen

116 File Documentation

Construct event group.

id_event field should not contain #TN_ID_EVENTGRP, otherwise, #TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

eventgrp Pointer to already allocated struct TN_EventGrp

initial_pattern Initial events pattern.

Returns

• #TN_RC_OK if event group was successfully created;

• If #TN_CHECK_PARAM is non-zero, additional return code is available: #TN_RC_WPARAM.

Definition at line 314 of file tn_eventgrp.h.

21.12.4.3 tn_eventgrp_delete()

enum TN_RCode tn_eventgrp_delete (

struct TN_EventGrp ∗ eventgrp)

Destruct event group.

All tasks that wait for the event(s) become runnable with #TN_RC_DELETED code returned.

(refer to Legend for details)

Parameters

eventgrp Pointer to event groupt to be deleted.

Returns

• #TN_RC_OK if event group was successfully deleted;

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.12.4.4 tn_eventgrp_wait()

enum TN_RCode tn_eventgrp_wait (

struct TN_EventGrp ∗ eventgrp,

Generated by Doxygen

21.12 core/tn_eventgrp.h File Reference 117

TN_UWord wait_pattern,

enum TN_EGrpWaitMode wait_mode,

TN_UWord ∗ p_flags_pattern,

TN_TickCnt timeout)

Wait for specified event(s) in the event group.

If the specified event is already active, function returns #TN_RC_OK immediately. Otherwise, behavior depends on
timeout value: refer to #TN_TickCnt.

(refer to Legend for details)

Parameters

eventgrp Pointer to event group to wait events from

wait_pattern Events bit pattern for which task should wait

wait_mode Specifies whether task should wait for all the event bits from wait_pattern to be set, or
for just any of them (see enum #TN_EGrpWaitMode)

p_flags_pattern Pointer to the TN_UWord variable in which actual event pattern that caused task to stop
waiting will be stored. May be TN_NULL.

timeout refer to #TN_TickCnt

Returns

• #TN_RC_OK if specified event is active (so the task can check variable pointed to by p_flags_←↩

pattern if it wasn't TN_NULL).

• #TN_RC_WCONTEXT if called from wrong context;

• Other possible return codes depend on timeout value, refer to #TN_TickCnt

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.12.4.5 tn_eventgrp_wait_polling()

enum TN_RCode tn_eventgrp_wait_polling (

struct TN_EventGrp ∗ eventgrp,

TN_UWord wait_pattern,

enum TN_EGrpWaitMode wait_mode,

TN_UWord ∗ p_flags_pattern)

The same as tn_eventgrp_wait() with zero timeout.

(refer to Legend for details)

21.12.4.6 tn_eventgrp_iwait_polling()

enum TN_RCode tn_eventgrp_iwait_polling (

struct TN_EventGrp ∗ eventgrp,

TN_UWord wait_pattern,

enum TN_EGrpWaitMode wait_mode,

TN_UWord ∗ p_flags_pattern)

The same as tn_eventgrp_wait() with zero timeout, but for using in the ISR.

(refer to Legend for details)

Generated by Doxygen

118 File Documentation

21.12.4.7 tn_eventgrp_modify()

enum TN_RCode tn_eventgrp_modify (

struct TN_EventGrp ∗ eventgrp,

enum TN_EGrpOp operation,

TN_UWord pattern)

Modify current events bit pattern in the event group.

Behavior depends on the given operation: refer to enum #TN_EGrpOp

(refer to Legend for details)

Parameters

eventgrp Pointer to event group to modify events in

operation Actual operation to perform: set, clear or toggle. Refer to enum #TN_EGrpOp

pattern Events pattern to be applied (depending on operation value)

Returns

• #TN_RC_OK on success;

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.12.4.8 tn_eventgrp_imodify()

enum TN_RCode tn_eventgrp_imodify (

struct TN_EventGrp ∗ eventgrp,

enum TN_EGrpOp operation,

TN_UWord pattern)

The same as tn_eventgrp_modify(), but for using in the ISR.

(refer to Legend for details)

21.13 core/tn_fmem.h File Reference

21.13.1 Detailed Description

Fixed memory blocks pool.

A fixed-sized memory blocks pool is used for managing fixed-sized memory blocks dynamically. A pool has a
memory area where fixed-sized memory blocks are allocated and the wait queue for acquiring a memory block. If
there are no free memory blocks, a task trying to acquire a memory block will be placed into the wait queue until a
free memory block arrives (another task returns it to the memory pool).

The operations of getting the block from memory pool and releasing it back take O(1) time independently of number
or size of the blocks.

For the useful pattern on how to use fixed memory pool together with queue, refer to the example←↩

: examples/queue. Be sure to examine the readme there.

Generated by Doxygen

21.13 core/tn_fmem.h File Reference 119

Data Structures

• struct TN_FMem

Fixed memory blocks pool.
• struct TN_FMemTaskWait

FMem-specific fields related to waiting task, to be included in struct TN_Task.

Macros

• #define TN_FMEM_BUF_DEF(name, item_type, size)

Convenience macro for the definition of buffer for memory pool.

Functions

• enum TN_RCode tn_fmem_create (struct TN_FMem ∗fmem, void ∗start_addr, unsigned int block_size, int
blocks_cnt)

Construct fixed memory blocks pool.
• enum TN_RCode tn_fmem_delete (struct TN_FMem ∗fmem)

Destruct fixed memory blocks pool.
• enum TN_RCode tn_fmem_get (struct TN_FMem ∗fmem, void ∗∗p_data, TN_TickCnt timeout)

Get memory block from the pool.
• enum TN_RCode tn_fmem_get_polling (struct TN_FMem ∗fmem, void ∗∗p_data)

The same as tn_fmem_get() with zero timeout.
• enum TN_RCode tn_fmem_iget_polling (struct TN_FMem ∗fmem, void ∗∗p_data)

The same as tn_fmem_get() with zero timeout, but for using in the ISR.
• enum TN_RCode tn_fmem_release (struct TN_FMem ∗fmem, void ∗p_data)

Release memory block back to the pool.
• enum TN_RCode tn_fmem_irelease (struct TN_FMem ∗fmem, void ∗p_data)

The same as tn_fmem_get(), but for using in the ISR.
• int tn_fmem_free_blocks_cnt_get (struct TN_FMem ∗fmem)

Returns number of free blocks in the memory pool.
• int tn_fmem_used_blocks_cnt_get (struct TN_FMem ∗fmem)

Returns number of used (non-free) blocks in the memory pool.

21.13.2 Macro Definition Documentation

21.13.2.1 TN_FMEM_BUF_DEF

#define TN_FMEM_BUF_DEF(

name,

item_type,

size)

Value:
TN_UWord name[\

(size) \
* (TN_MAKE_ALIG_SIZE(sizeof(item_type)) / sizeof(TN_UWord)) \
]

Convenience macro for the definition of buffer for memory pool.

See tn_fmem_create() for usage example.

Generated by Doxygen

120 File Documentation

Parameters

name C variable name of the buffer array (this name should be given to the tn_fmem_create()
function as the start_addr argument)

item_type Type of item in the memory pool, like struct MyMemoryItem.

size Number of items in the memory pool.

Definition at line 146 of file tn_fmem.h.

21.13.3 Function Documentation

21.13.3.1 tn_fmem_create()

enum TN_RCode tn_fmem_create (

struct TN_FMem ∗ fmem,

void ∗ start_addr,

unsigned int block_size,

int blocks_cnt)

Construct fixed memory blocks pool.

id_fmp field should not contain #TN_ID_FSMEMORYPOOL, otherwise, #TN_RC_WPARAM is returned.

Note that start_addr and block_size should be a multiple of sizeof(#TN_UWord).

For the definition of buffer, convenience macro TN_FMEM_BUF_DEF() was invented.

Typical definition looks as follows:
//-- number of blocks in the pool
#define MY_MEMORY_BUF_SIZE 8
//-- type for memory block
struct MyMemoryItem {

// ... arbitrary fields ...
};
//-- define buffer for memory pool
TN_FMEM_BUF_DEF(my_fmem_buf, struct MyMemoryItem, MY_MEMORY_BUF_SIZE);
//-- define memory pool structure
struct TN_FMem my_fmem;

And then, construct your my_fmem as follows:
enum TN_RCode rc;
rc = tn_fmem_create(&my_fmem,

my_fmem_buf,
TN_MAKE_ALIG_SIZE(sizeof(struct MyMemoryItem)),
MY_MEMORY_BUF_SIZE);

if (rc != TN_RC_OK){
//-- handle error

}

If given start_addr and/or block_size aren't aligned properly, #TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

fmem pointer to already allocated struct TN_FMem.

start_addr pointer to start of the array; should be aligned properly, see example above

block_size size of memory block; should be a multiple of sizeof(#TN_UWord), see example above

blocks_cnt capacity (total number of blocks in the memory pool)

Generated by Doxygen

21.13 core/tn_fmem.h File Reference 121

Returns

• #TN_RC_OK if memory pool was successfully created;

• If #TN_CHECK_PARAM is non-zero, additional return code is available: #TN_RC_WPARAM.

See also

TN_MAKE_ALIG_SIZE

21.13.3.2 tn_fmem_delete()

enum TN_RCode tn_fmem_delete (

struct TN_FMem ∗ fmem)

Destruct fixed memory blocks pool.

All tasks that wait for free memory block become runnable with #TN_RC_DELETED code returned.

(refer to Legend for details)

Parameters

fmem pointer to memory pool to be deleted

Returns

• #TN_RC_OK if memory pool is successfully deleted;

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.13.3.3 tn_fmem_get()

enum TN_RCode tn_fmem_get (

struct TN_FMem ∗ fmem,

void ∗∗ p_data,

TN_TickCnt timeout)

Get memory block from the pool.

Start address of the memory block is returned through the p_data argument. The content of memory block is
undefined. If there is no free block in the pool, behavior depends on timeout value: refer to #TN_TickCnt.

(refer to Legend for details)

Generated by Doxygen

122 File Documentation

Parameters

fmem Pointer to memory pool

p_data Address of the (void ∗) to which received block address will be saved

timeout
Refer to #TN_TickCnt

Returns

• #TN_RC_OK if block was successfully returned through p_data;

• #TN_RC_WCONTEXT if called from wrong context;

• Other possible return codes depend on timeout value, refer to #TN_TickCnt

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.13.3.4 tn_fmem_get_polling()

enum TN_RCode tn_fmem_get_polling (

struct TN_FMem ∗ fmem,

void ∗∗ p_data)

The same as tn_fmem_get() with zero timeout.

(refer to Legend for details)

21.13.3.5 tn_fmem_iget_polling()

enum TN_RCode tn_fmem_iget_polling (

struct TN_FMem ∗ fmem,

void ∗∗ p_data)

The same as tn_fmem_get() with zero timeout, but for using in the ISR.

(refer to Legend for details)

21.13.3.6 tn_fmem_release()

enum TN_RCode tn_fmem_release (

struct TN_FMem ∗ fmem,

void ∗ p_data)

Release memory block back to the pool.

The kernel does not check the validity of the membership of given block in the memory pool. If all the memory
blocks in the pool are free already, #TN_RC_OVERFLOW is returned.

(refer to Legend for details)

Generated by Doxygen

21.13 core/tn_fmem.h File Reference 123

Parameters

fmem Pointer to memory pool.

p_data Address of the memory block to release.

Returns

• #TN_RC_OK on success

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.13.3.7 tn_fmem_irelease()

enum TN_RCode tn_fmem_irelease (

struct TN_FMem ∗ fmem,

void ∗ p_data)

The same as tn_fmem_get(), but for using in the ISR.

(refer to Legend for details)

21.13.3.8 tn_fmem_free_blocks_cnt_get()

int tn_fmem_free_blocks_cnt_get (

struct TN_FMem ∗ fmem)

Returns number of free blocks in the memory pool.

(refer to Legend for details)

Parameters

fmem Pointer to memory pool.

Returns

Number of free blocks in the memory pool, or -1 if wrong params were given (the check is performed if only
#TN_CHECK_PARAM is non-zero)

21.13.3.9 tn_fmem_used_blocks_cnt_get()

int tn_fmem_used_blocks_cnt_get (

struct TN_FMem ∗ fmem)

Generated by Doxygen

124 File Documentation

Returns number of used (non-free) blocks in the memory pool.

(refer to Legend for details)

Parameters

fmem Pointer to memory pool.

Returns

Number of used (non-free) blocks in the memory pool, or -1 if wrong params were given (the check is per-
formed if only #TN_CHECK_PARAM is non-zero)

21.14 core/tn_list.h File Reference

21.14.1 Detailed Description

Circular doubly linked list, for internal kernel usage.

Data Structures

• struct TN_ListItem

Circular doubly linked list item, for internal kernel usage.

21.15 core/tn_mutex.h File Reference

21.15.1 Detailed Description

A mutex is an object used to protect shared resources.

There is a lot of confusion about the differences between semaphores and mutexes, so, it's highly recommended
that you read a small article by Michael Barr: Mutexes and Semaphores Demystified.

Very short:

While a mutex is seemingly similar to a semaphore with a maximum count of 1 (the so-called binary semaphore),
their usage is very different: the purpose of mutex is to protect a shared resource. A locked mutex is "owned" by
the task that locked it, and only that same task may unlock it. This ownership allows you to implement algorithms to
prevent priority inversion. So, a mutex is a locking mechanism.

A semaphore, on the other hand, is a signaling mechanism. It's quite legal and encouraged for a semaphore to be
acquired in task A, and then signaled from task B or even from an ISR. It may be used in situations like "producer
and consumer", etc.

In addition to the article mentioned above, you may want to look at the related question on
stackoverflow.com.
Mutex features in TNeo:

• Recursive locking is supported (if option #TN_MUTEX_REC is non-zero);

Generated by Doxygen

http://goo.gl/YprPBW
http://goo.gl/ZBReHK
http://goo.gl/ZBReHK

21.15 core/tn_mutex.h File Reference 125

• Deadlock detection (if option #TN_MUTEX_DEADLOCK_DETECT is non-zero);

• Two protocols available to avoid unbounded priority inversion: priority inheritance and priority ceiling.

A discussion about the strengths and weaknesses of each protocol as well as the priority inversions problem is
beyond the scope of this document.
The priority inheritance protocol solves the priority inversion problem, but doesn't prevent deadlocks. However, the
kernel can notify you if a deadlock has occurred (see #TN_MUTEX_DEADLOCK_DETECT).
The priority ceiling protocol prevents deadlocks and chained blocking but it is slower than the priority inheritance
protocol.

See also

#TN_USE_MUTEXES

Data Structures

• struct TN_Mutex

Mutex.

Enumerations

• enum TN_MutexProtocol { TN_MUTEX_PROT_CEILING = 1, TN_MUTEX_PROT_INHERIT = 2 }

Mutex protocol for avoid priority inversion.

Functions

• enum TN_RCode tn_mutex_create (struct TN_Mutex ∗mutex, enum TN_MutexProtocol protocol, int ceil_←↩

priority)

Construct the mutex.

• enum TN_RCode tn_mutex_delete (struct TN_Mutex ∗mutex)

Destruct mutex.

• enum TN_RCode tn_mutex_lock (struct TN_Mutex ∗mutex, TN_TickCnt timeout)

Lock mutex.

• enum TN_RCode tn_mutex_lock_polling (struct TN_Mutex ∗mutex)

The same as tn_mutex_lock() with zero timeout.

• enum TN_RCode tn_mutex_unlock (struct TN_Mutex ∗mutex)

Unlock mutex.

21.15.2 Enumeration Type Documentation

21.15.2.1 TN_MutexProtocol

enum TN_MutexProtocol

Mutex protocol for avoid priority inversion.

Enumerator

TN_MUTEX_PROT_CEILING Mutex uses priority ceiling protocol.

TN_MUTEX_PROT_INHERIT
Mutex uses priority inheritance protocol.

Definition at line 109 of file tn_mutex.h.

Generated by Doxygen

126 File Documentation

21.15.3 Function Documentation

21.15.3.1 tn_mutex_create()

enum TN_RCode tn_mutex_create (

struct TN_Mutex ∗ mutex,

enum TN_MutexProtocol protocol,

int ceil_priority)

Construct the mutex.
The field id_mutex should not contain #TN_ID_MUTEX, otherwise, #TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

mutex Pointer to already allocated struct TN_Mutex

protocol Mutex protocol: priority ceiling or priority inheritance. See enum #TN_MutexProtocol.

ceil_priority Used if only protocol is #TN_MUTEX_PROT_CEILING: maximum priority of the task that
may lock the mutex.

Returns

• #TN_RC_OK if mutex was successfully created;

• If #TN_CHECK_PARAM is non-zero, additional return code is available: #TN_RC_WPARAM.

21.15.3.2 tn_mutex_delete()

enum TN_RCode tn_mutex_delete (

struct TN_Mutex ∗ mutex)

Destruct mutex.
All tasks that wait for lock the mutex become runnable with #TN_RC_DELETED code returned.

(refer to Legend for details)

Parameters

mutex mutex to destruct

Returns

• #TN_RC_OK if mutex was successfully destroyed;

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.15.3.3 tn_mutex_lock()

enum TN_RCode tn_mutex_lock (

struct TN_Mutex ∗ mutex,

TN_TickCnt timeout)

Lock mutex.

Generated by Doxygen

21.15 core/tn_mutex.h File Reference 127

• If the mutex is not locked, function immediately locks the mutex and returns #TN_RC_OK.

• If the mutex is already locked by the same task, lock count is merely incremented and #TN_RC_OK is
returned immediately.

• If the mutex is locked by different task, behavior depends on timeout value: refer to #TN_TickCnt.

(refer to Legend for details)

Parameters

mutex mutex to lock
timeout refer to #TN_TickCnt

Returns

• #TN_RC_OK if mutex is successfully locked or if lock count was merely incremented (this is possible if
recursive locking is enabled, see #TN_MUTEX_REC)

• #TN_RC_WCONTEXT if called from wrong context;

• #TN_RC_ILLEGAL_USE

– if mutex protocol is #TN_MUTEX_PROT_CEILING and calling task's priority is higher than
ceil_priority given to tn_mutex_create()

– if recursive locking is disabled (see #TN_MUTEX_REC) and the mutex is already locked by calling
task

• Other possible return codes depend on timeout value, refer to #TN_TickCnt

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

See also

#TN_MutexProtocol

21.15.3.4 tn_mutex_lock_polling()

enum TN_RCode tn_mutex_lock_polling (

struct TN_Mutex ∗ mutex)

The same as tn_mutex_lock() with zero timeout.

(refer to Legend for details)

21.15.3.5 tn_mutex_unlock()

enum TN_RCode tn_mutex_unlock (

struct TN_Mutex ∗ mutex)

Unlock mutex.

• If mutex is not locked or locked by different task, #TN_RC_ILLEGAL_USE is returned.

• If mutex is already locked by calling task, lock count is decremented. Now, if lock count is zero, mutex
gets unlocked (and if there are task(s) waiting for mutex, the first one from the wait queue locks the mutex).
Otherwise, mutex remains locked with lock count decremented and function returns #TN_RC_OK.

(refer to Legend for details)

Generated by Doxygen

128 File Documentation

Returns

• #TN_RC_OK if mutex is unlocked of if lock count was merely decremented (this is possible if recursive
locking is enabled, see #TN_MUTEX_REC)

• #TN_RC_WCONTEXT if called from wrong context;

• #TN_RC_ILLEGAL_USE if mutex is either not locked or locked by different task

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.16 core/tn_oldsymbols.h File Reference

21.16.1 Detailed Description

Compatibility layer for old projects that use old TNKernel names; usage of them in new projects is discouraged.
If you're porting your existing application written for TNKernel, it might be useful though.
Included automatially if the option #TN_OLD_TNKERNEL_NAMES is set.

Macros

• #define _CDLL_QUEUE TN_ListItem

old TNKernel struct name of TN_ListItem

• #define _TN_MUTEX TN_Mutex

old TNKernel struct name of #TN_Mutex

• #define _TN_DQUE TN_DQueue

old TNKernel struct name of #TN_DQueue

• #define _TN_TCB TN_Task

old TNKernel struct name of #TN_Task

• #define _TN_FMP TN_FMem

old TNKernel struct name of #TN_FMem

• #define _TN_SEM TN_Sem

old TNKernel struct name of #TN_Sem

• #define _TN_EVENT TN_EventGrp

old TNKernel struct name of #TN_EventGrp, available if only #TN_OLD_EVENT_API is non-zero

• #define MAKE_ALIG TN_MAKE_ALIG

old TNKernel name of #TN_MAKE_ALIG macro

• #define TSK_STATE_RUNNABLE TN_TASK_STATE_RUNNABLE

old TNKernel name of #TN_TASK_STATE_RUNNABLE

• #define TSK_STATE_WAIT TN_TASK_STATE_WAIT

old TNKernel name of #TN_TASK_STATE_WAIT

• #define TSK_STATE_SUSPEND TN_TASK_STATE_SUSPEND

old TNKernel name of #TN_TASK_STATE_SUSPEND

• #define TSK_STATE_WAITSUSP TN_TASK_STATE_WAITSUSP

old TNKernel name of #TN_TASK_STATE_WAITSUSP

• #define TSK_STATE_DORMANT TN_TASK_STATE_DORMANT

old TNKernel name of #TN_TASK_STATE_DORMANT

• #define TN_TASK_START_ON_CREATION TN_TASK_CREATE_OPT_START

old TNKernel name of #TN_TASK_CREATE_OPT_START

• #define TN_EXIT_AND_DELETE_TASK TN_TASK_EXIT_OPT_DELETE

old TNKernel name of #TN_TASK_EXIT_OPT_DELETE

• #define TN_EVENT_WCOND_AND TN_EVENTGRP_WMODE_AND

old TNKernel name of #TN_EVENTGRP_WMODE_AND

• #define TN_EVENT_WCOND_OR TN_EVENTGRP_WMODE_OR

Generated by Doxygen

21.16 core/tn_oldsymbols.h File Reference 129

old TNKernel name of #TN_EVENTGRP_WMODE_OR

• #define TSK_WAIT_REASON_NONE TN_WAIT_REASON_NONE

old TNKernel name of #TN_WAIT_REASON_NONE

• #define TSK_WAIT_REASON_SLEEP TN_WAIT_REASON_SLEEP

old TNKernel name of #TN_WAIT_REASON_SLEEP

• #define TSK_WAIT_REASON_SEM TN_WAIT_REASON_SEM

old TNKernel name of #TN_WAIT_REASON_SEM

• #define TSK_WAIT_REASON_EVENT TN_WAIT_REASON_EVENT

old TNKernel name of #TN_WAIT_REASON_EVENT

• #define TSK_WAIT_REASON_DQUE_WSEND TN_WAIT_REASON_DQUE_WSEND

old TNKernel name of #TN_WAIT_REASON_DQUE_WSEND

• #define TSK_WAIT_REASON_DQUE_WRECEIVE TN_WAIT_REASON_DQUE_WRECEIVE

old TNKernel name of #TN_WAIT_REASON_DQUE_WRECEIVE

• #define TSK_WAIT_REASON_MUTEX_C TN_WAIT_REASON_MUTEX_C

old TNKernel name of #TN_WAIT_REASON_MUTEX_C

• #define TSK_WAIT_REASON_MUTEX_I TN_WAIT_REASON_MUTEX_I

old TNKernel name of #TN_WAIT_REASON_MUTEX_I

• #define TSK_WAIT_REASON_WFIXMEM TN_WAIT_REASON_WFIXMEM

old TNKernel name of #TN_WAIT_REASON_WFIXMEM

• #define TERR_NO_ERR TN_RC_OK

old TNKernel name of #TN_RC_OK

• #define TERR_OVERFLOW TN_RC_OVERFLOW

old TNKernel name of #TN_RC_OVERFLOW

• #define TERR_WCONTEXT TN_RC_WCONTEXT

old TNKernel name of #TN_RC_WCONTEXT

• #define TERR_WSTATE TN_RC_WSTATE

old TNKernel name of #TN_RC_WSTATE

• #define TERR_TIMEOUT TN_RC_TIMEOUT

old TNKernel name of #TN_RC_TIMEOUT

• #define TERR_WRONG_PARAM TN_RC_WPARAM

old TNKernel name of #TN_RC_WPARAM

• #define TERR_ILUSE TN_RC_ILLEGAL_USE

old TNKernel name of #TN_RC_ILLEGAL_USE

• #define TERR_NOEXS TN_RC_INVALID_OBJ

old TNKernel name of #TN_RC_INVALID_OBJ

• #define TERR_DLT TN_RC_DELETED

old TNKernel name of #TN_RC_DELETED

• #define TERR_FORCED TN_RC_FORCED

old TNKernel name of #TN_RC_FORCED

• #define TERR_INTERNAL TN_RC_INTERNAL

old TNKernel name of #TN_RC_INTERNAL

• #define TN_MUTEX_ATTR_CEILING TN_MUTEX_PROT_CEILING

old TNKernel name of #TN_MUTEX_PROT_CEILING

• #define TN_MUTEX_ATTR_INHERIT TN_MUTEX_PROT_INHERIT

old TNKernel name of #TN_MUTEX_PROT_INHERIT

• #define tn_sem_polling tn_sem_acquire_polling

old TNKernel name of #tn_sem_acquire_polling

• #define tn_sem_ipolling tn_sem_iacquire_polling

old TNKernel name of #tn_sem_iacquire_polling

• #define tn_sem_acquire tn_sem_wait

old name of #tn_sem_wait

Generated by Doxygen

130 File Documentation

• #define tn_sem_acquire_polling tn_sem_wait_polling

old name of #tn_sem_wait_polling

• #define tn_sem_iacquire_polling tn_sem_iwait_polling

old name of #tn_sem_iwait_polling

• #define tn_fmem_get_ipolling tn_fmem_iget_polling

old TNKernel name of #tn_fmem_iget_polling

• #define tn_queue_ireceive tn_queue_ireceive_polling

old TNKernel name of #tn_queue_ireceive_polling

• #define tn_start_system tn_sys_start

old TNKernel name of #tn_sys_start

• #define tn_sys_tslice_ticks tn_sys_tslice_set

old TNKernel name of #tn_sys_tslice_set

• #define align_attr_start TN_ARCH_STK_ATTR_BEFORE

old TNKernel name of #TN_ARCH_STK_ATTR_BEFORE

• #define align_attr_end TN_ARCH_STK_ATTR_AFTER

old TNKernel name of #TN_ARCH_STK_ATTR_AFTER

• #define tn_cpu_int_disable tn_arch_int_dis

old TNKernel name of #tn_arch_int_dis

• #define tn_cpu_int_enable tn_arch_int_en

old TNKernel name of #tn_arch_int_en

• #define tn_cpu_save_sr tn_arch_sr_save_int_dis

old TNKernel name of #tn_arch_sr_save_int_dis

• #define tn_cpu_restore_sr tn_arch_sr_restore

old TNKernel name of #tn_arch_sr_restore

• #define tn_disable_interrupt TN_INT_DIS_SAVE

old TNKernel name of #TN_INT_DIS_SAVE

• #define tn_enable_interrupt TN_INT_RESTORE

old TNKernel name of #TN_INT_RESTORE

• #define tn_idisable_interrupt TN_INT_IDIS_SAVE

old TNKernel name of #TN_INT_IDIS_SAVE

• #define tn_ienable_interrupt TN_INT_IRESTORE

old TNKernel name of #TN_INT_IRESTORE

• #define tn_chk_irq_disabled TN_IS_INT_DISABLED

old TNKernel name of #TN_IS_INT_DISABLED

• #define TN_NUM_PRIORITY TN_PRIORITIES_CNT

old TNKernel name of #TN_PRIORITIES_CNT

• #define _TN_BITS_IN_INT TN_INT_WIDTH

old TNKernel name of #TN_INT_WIDTH

• #define TN_ALIG sizeof(TN_UWord)

old TNKernel name for sizeof(#TN_UWord)

• #define NO_TIME_SLICE TN_NO_TIME_SLICE

old TNKernel name for #TN_NO_TIME_SLICE

• #define MAX_TIME_SLICE TN_MAX_TIME_SLICE

old TNKernel name for #TN_MAX_TIME_SLICE

• #define TN_TASK_STACK_DEF TN_STACK_ARR_DEF

old name for #TN_STACK_ARR_DEF

• #define TN_Timeout TN_TickCnt

old name for #TN_TickCnt

• #define TN_EVENT_ATTR_SINGLE TN_EVENTGRP_ATTR_SINGLE
• #define TN_EVENT_ATTR_MULTI TN_EVENTGRP_ATTR_MULTI
• #define TN_EVENT_ATTR_CLR TN_EVENTGRP_ATTR_CLR

Generated by Doxygen

21.16 core/tn_oldsymbols.h File Reference 131

• #define tn_event_create(ev, attr, pattern) tn_eventgrp_create_wattr((ev), (enum TN_EGrpAttr)(attr), (pattern))

• #define tn_event_delete tn_eventgrp_delete

• #define tn_event_wait tn_eventgrp_wait

• #define tn_event_wait_polling tn_eventgrp_wait_polling

• #define tn_event_iwait tn_eventgrp_iwait_polling

• #define tn_event_set(ev, pattern) tn_eventgrp_modify ((ev), TN_EVENTGRP_OP_SET, (pattern))

• #define tn_event_iset(ev, pattern) tn_eventgrp_imodify((ev), TN_EVENTGRP_OP_SET, (pattern))

• #define tn_event_clear(ev, pattern) tn_eventgrp_modify ((ev), TN_EVENTGRP_OP_CLEAR, (∼(pattern)))

• #define tn_event_iclear(ev, pattern) tn_eventgrp_imodify((ev), TN_EVENTGRP_OP_CLEAR, (∼(pattern)))

Typedefs

• typedef struct TN_ListItem CDLL_QUEUE

old TNKernel name of TN_ListItem

• typedef struct TN_Mutex TN_MUTEX

old TNKernel name of #TN_Mutex

• typedef struct TN_DQueue TN_DQUE

old TNKernel name of #TN_DQueue

• typedef struct TN_Task TN_TCB

old TNKernel name of #TN_Task

• typedef struct TN_FMem TN_FMP

old TNKernel name of #TN_FMem

• typedef struct TN_Sem TN_SEM

old TNKernel name of #TN_Sem

21.16.2 Macro Definition Documentation

21.16.2.1 MAKE_ALIG

#define MAKE_ALIG TN_MAKE_ALIG

old TNKernel name of #TN_MAKE_ALIG macro

Attention

it is recommended to use #TN_MAKE_ALIG_SIZE macro instead of this one, in order to avoid confusion
caused by various TNKernel ports: refer to the section Macro MAKE_ALIG() for details.

Definition at line 144 of file tn_oldsymbols.h.

21.16.2.2 TN_EVENT_ATTR_SINGLE

#define TN_EVENT_ATTR_SINGLE TN_EVENTGRP_ATTR_SINGLE

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old name for #TN_EVENTGRP_ATTR_SINGLE,
Definition at line 356 of file tn_oldsymbols.h.

Generated by Doxygen

132 File Documentation

21.16.2.3 TN_EVENT_ATTR_MULTI

#define TN_EVENT_ATTR_MULTI TN_EVENTGRP_ATTR_MULTI

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old name for #TN_EVENTGRP_ATTR_MULTI,
Definition at line 362 of file tn_oldsymbols.h.

21.16.2.4 TN_EVENT_ATTR_CLR

#define TN_EVENT_ATTR_CLR TN_EVENTGRP_ATTR_CLR

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old name for #TN_EVENTGRP_ATTR_CLR,
Definition at line 368 of file tn_oldsymbols.h.

21.16.2.5 tn_event_create

#define tn_event_create(

ev,

attr,

pattern) tn_eventgrp_create_wattr((ev), (enum TN_EGrpAttr)(attr), (pattern))

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old name for #tn_eventgrp_create_wattr(),
Definition at line 374 of file tn_oldsymbols.h.

21.16.2.6 tn_event_delete

#define tn_event_delete tn_eventgrp_delete

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old name for #tn_eventgrp_delete(),
Definition at line 381 of file tn_oldsymbols.h.

21.16.2.7 tn_event_wait

#define tn_event_wait tn_eventgrp_wait

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old name for #tn_eventgrp_wait(),
Definition at line 387 of file tn_oldsymbols.h.

Generated by Doxygen

21.16 core/tn_oldsymbols.h File Reference 133

21.16.2.8 tn_event_wait_polling

#define tn_event_wait_polling tn_eventgrp_wait_polling

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old name for #tn_eventgrp_wait_polling(),
Definition at line 393 of file tn_oldsymbols.h.

21.16.2.9 tn_event_iwait

#define tn_event_iwait tn_eventgrp_iwait_polling

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old name for #tn_eventgrp_iwait_polling(),
Definition at line 399 of file tn_oldsymbols.h.

21.16.2.10 tn_event_set

#define tn_event_set(

ev,

pattern) tn_eventgrp_modify ((ev), TN_EVENTGRP_OP_SET, (pattern))

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old TNKernel-compatible way of calling #tn_eventgrp_modify (event, #TN_EVENTGRP_OP_SET,
pattern)
Definition at line 406 of file tn_oldsymbols.h.

21.16.2.11 tn_event_iset

#define tn_event_iset(

ev,

pattern) tn_eventgrp_imodify((ev), TN_EVENTGRP_OP_SET, (pattern))

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old TNKernel-compatible way of calling #tn_eventgrp_imodify (event, #TN_EVENTGRP_OP_SET,
pattern)
Definition at line 413 of file tn_oldsymbols.h.

21.16.2.12 tn_event_clear

#define tn_event_clear(

ev,

pattern) tn_eventgrp_modify ((ev), TN_EVENTGRP_OP_CLEAR, (∼(pattern)))

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old TNKernel-compatible way of calling #tn_eventgrp_modify (event, #TN_EVENTGRP_OP_CLE←↩

AR, (∼pattern))

Generated by Doxygen

134 File Documentation

Attention

Unlike #tn_eventgrp_modify(), the pattern should be inverted!

Definition at line 422 of file tn_oldsymbols.h.

21.16.2.13 tn_event_iclear

#define tn_event_iclear(

ev,

pattern) tn_eventgrp_imodify((ev), TN_EVENTGRP_OP_CLEAR, (∼(pattern)))

Attention

Deprecated. Available if only #TN_OLD_EVENT_API option is non-zero.

Old TNKernel-compatible way of calling #tn_eventgrp_imodify (event, #TN_EVENTGRP_OP_CLE←↩

AR, (∼pattern))

Attention

Unlike #tn_eventgrp_modify(), the pattern should be inverted!

Definition at line 431 of file tn_oldsymbols.h.

21.17 core/tn_sem.h File Reference

21.17.1 Detailed Description

A semaphore: an object to provide signaling mechanism.
There is a lot of confusion about differences between semaphores and mutexes, so, it's quite recommended to read
small article by Michael Barr: Mutexes and Semaphores Demystified.
Very short:
While mutex is seemingly similar to a semaphore with maximum count of 1 (the so-called binary semaphore), their
usage is very different: the purpose of mutex is to protect shared resource. A locked mutex is "owned" by the task
that locked it, and only the same task may unlock it. This ownership allows to implement algorithms to prevent
priority inversion. So, mutex is a locking mechanism.
Semaphore, on the other hand, is signaling mechanism. It's quite legal and encouraged for semaphore to be waited
for in the task A, and then signaled from task B or even from ISR. It may be used in situations like "producer and
consumer", etc.
In addition to the article mentioned above, you may want to look at the related question on
stackoverflow.com.

Data Structures

• struct TN_Sem

Semaphore.

Functions

• enum TN_RCode tn_sem_create (struct TN_Sem ∗sem, int start_count, int max_count)

Construct the semaphore.

• enum TN_RCode tn_sem_delete (struct TN_Sem ∗sem)

Destruct the semaphore.

• enum TN_RCode tn_sem_signal (struct TN_Sem ∗sem)

Signal the semaphore.

• enum TN_RCode tn_sem_isignal (struct TN_Sem ∗sem)

The same as tn_sem_signal() but for using in the ISR.

• enum TN_RCode tn_sem_wait (struct TN_Sem ∗sem, TN_TickCnt timeout)

Generated by Doxygen

http://goo.gl/YprPBW
http://goo.gl/ZBReHK
http://goo.gl/ZBReHK

21.17 core/tn_sem.h File Reference 135

Wait for the semaphore.

• enum TN_RCode tn_sem_wait_polling (struct TN_Sem ∗sem)

The same as tn_sem_wait() with zero timeout.

• enum TN_RCode tn_sem_iwait_polling (struct TN_Sem ∗sem)

The same as tn_sem_wait() with zero timeout, but for using in the ISR.

21.17.2 Function Documentation

21.17.2.1 tn_sem_create()

enum TN_RCode tn_sem_create (

struct TN_Sem ∗ sem,

int start_count,

int max_count)

Construct the semaphore.
id_sem field should not contain #TN_ID_SEMAPHORE, otherwise, #TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

sem Pointer to already allocated struct TN_Sem

start_count Initial counter value, typically it is equal to max_count

max_count Maximum counter value.

Returns

• #TN_RC_OK if semaphore was successfully created;

• If #TN_CHECK_PARAM is non-zero, additional return code is available: #TN_RC_WPARAM.

21.17.2.2 tn_sem_delete()

enum TN_RCode tn_sem_delete (

struct TN_Sem ∗ sem)

Destruct the semaphore.
All tasks that wait for the semaphore become runnable with #TN_RC_DELETED code returned.

(refer to Legend for details)

Parameters

sem semaphore to destruct

Returns

• #TN_RC_OK if semaphore was successfully deleted;

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.17.2.3 tn_sem_signal()

enum TN_RCode tn_sem_signal (

Generated by Doxygen

136 File Documentation

struct TN_Sem ∗ sem)

Signal the semaphore.
If current semaphore counter (count) is less than max_count, counter is incremented by one, and first task (if
any) that waits for the semaphore becomes runnable with #TN_RC_OK returned from tn_sem_wait().
if semaphore counter is already has its max value, no action performed and #TN_RC_OVERFLOW is returned

(refer to Legend for details)

Parameters

sem semaphore to signal

Returns

• #TN_RC_OK if successful

• #TN_RC_WCONTEXT if called from wrong context;

• #TN_RC_OVERFLOW if count is already at maximum value (max_count)

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.17.2.4 tn_sem_isignal()

enum TN_RCode tn_sem_isignal (

struct TN_Sem ∗ sem)

The same as tn_sem_signal() but for using in the ISR.

(refer to Legend for details)

21.17.2.5 tn_sem_wait()

enum TN_RCode tn_sem_wait (

struct TN_Sem ∗ sem,

TN_TickCnt timeout)

Wait for the semaphore.
If the current semaphore counter (count) is non-zero, it is decremented and #TN_RC_OK is returned. Otherwise,
behavior depends on timeout value: task might switch to WAIT state until someone signaled the semaphore or
until the timeout expired. refer to #TN_TickCnt.

(refer to Legend for details)

Parameters

sem semaphore to wait for

timeout refer to #TN_TickCnt

Returns

• #TN_RC_OK if waiting was successfull

• Other possible return codes depend on timeout value, refer to #TN_TickCnt

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.17.2.6 tn_sem_wait_polling()

enum TN_RCode tn_sem_wait_polling (

Generated by Doxygen

21.18 core/tn_sys.h File Reference 137

struct TN_Sem ∗ sem)

The same as tn_sem_wait() with zero timeout.

(refer to Legend for details)

21.17.2.7 tn_sem_iwait_polling()

enum TN_RCode tn_sem_iwait_polling (

struct TN_Sem ∗ sem)

The same as tn_sem_wait() with zero timeout, but for using in the ISR.

(refer to Legend for details)

21.18 core/tn_sys.h File Reference

21.18.1 Detailed Description

Kernel system routines: system start, tick processing, time slice managing.

Data Structures

• struct _TN_BuildCfg

Structure with build-time configurations values; it is needed for run-time check which ensures that build-time options
for the kernel match ones for the application.

Macros

• #define TN_STACK_ARR_DEF(name, size)

Convenience macro for the definition of stack array.

• #define _TN_BUILD_CFG_ARCH_STRUCT_FILL(_p_struct)

For internal kernel usage: helper macro that fills architecture-dependent values.

• #define _TN_BUILD_CFG_STRUCT_FILL(_p_struct)

For internal kernel usage: fill the structure #_TN_BuildCfg with current build-time configuration values.

• #define _TN_MAX_INLINED_FUNC /∗ nothing ∗/
For internal kernel usage: helper macro that allows functions to be inlined or not depending on configuration (see
#TN_MAX_INLINE)

• #define TN_NO_TIME_SLICE 0

Value to pass to tn_sys_tslice_set() to turn round-robin off.

• #define TN_MAX_TIME_SLICE 0xFFFE

Max value of time slice.

Typedefs

• typedef void() TN_CBUserTaskCreate(void)

User-provided callback function that is called directly from tn_sys_start() as a part of system startup routine;
it should merely create at least one (and typically just one) user's task, which should perform all the rest application
initialization.

• typedef void() TN_CBIdle(void)

User-provided callback function which is called repeatedly from the idle task loop.

• typedef void() TN_CBStackOverflow(struct TN_Task ∗task)

User-provided callback function that is called when the kernel detects stack overflow (see #TN_STACK_OVERFL←↩

OW_CHECK).

• typedef void() TN_CBDeadlock(TN_BOOL active, struct TN_Mutex ∗mutex, struct TN_Task ∗task)

User-provided callback function that is called whenever deadlock becomes active or inactive.

Generated by Doxygen

138 File Documentation

Enumerations

• enum TN_StateFlag { TN_STATE_FLAG__SYS_RUNNING = (1 << 0), TN_STATE_FLAG__DEADLOCK =
(1 << 1) }

System state flags.

• enum TN_Context { TN_CONTEXT_NONE, TN_CONTEXT_TASK, TN_CONTEXT_ISR }

System context.

Functions

• void tn_sys_start (TN_UWord ∗idle_task_stack, unsigned int idle_task_stack_size, TN_UWord ∗int_stack,
unsigned int int_stack_size, TN_CBUserTaskCreate ∗cb_user_task_create, TN_CBIdle ∗cb_idle)

Initial TNeo system start function, never returns.

• void tn_tick_int_processing (void)

Process system tick; should be called periodically, typically from some kind of timer ISR.

• enum TN_RCode tn_sys_tslice_set (int priority, int ticks)

Set time slice ticks value for specified priority (see Round-robin scheduling).

• TN_TickCnt tn_sys_time_get (void)

Get current system ticks count.

• void tn_callback_deadlock_set (TN_CBDeadlock ∗cb)

Set callback function that should be called whenever deadlock occurs or becomes inactive (say, if one of tasks involved
in the deadlock was released from wait because of timeout)

• void tn_callback_stack_overflow_set (TN_CBStackOverflow ∗cb)

Set callback function that is called when the kernel detects stack overflow (see #TN_STACK_OVERFLOW_CHECK).

• enum TN_StateFlag tn_sys_state_flags_get (void)

Returns current system state flags.

• enum TN_Context tn_sys_context_get (void)

Returns system context: task or ISR.

• _TN_STATIC_INLINE TN_BOOL tn_is_task_context (void)

Returns whether current system context is #TN_CONTEXT_TASK

• _TN_STATIC_INLINE TN_BOOL tn_is_isr_context (void)

Returns whether current system context is #TN_CONTEXT_ISR

• struct TN_Task ∗ tn_cur_task_get (void)

Returns pointer to the currently running task.

• TN_TaskBody ∗ tn_cur_task_body_get (void)

Returns pointer to the body function of the currently running task.

• _TN_STATIC_INLINE TN_UWord tn_sched_dis_save (void)

Disable kernel scheduler and return previous scheduler state.

• _TN_STATIC_INLINE void tn_sched_restore (TN_UWord sched_state)

Restore state of the kernel scheduler.

• void tn_callback_dyn_tick_set (TN_CBTickSchedule ∗cb_tick_schedule, TN_CBTickCntGet ∗cb_tick_cnt_←↩

get)

Available if only TN_DYNAMIC_TICK is set.

21.18.2 Macro Definition Documentation

Generated by Doxygen

21.18 core/tn_sys.h File Reference 139

21.18.2.1 TN_STACK_ARR_DEF

#define TN_STACK_ARR_DEF(

name,

size)

Value:
TN_ARCH_STK_ATTR_BEFORE \
TN_UWord name[(size)] \
TN_ARCH_STK_ATTR_AFTER

Convenience macro for the definition of stack array.
See tn_task_create() for the usage example.

Parameters

name C variable name of the array

size size of the stack array in words (#TN_UWord), not in bytes.

Definition at line 87 of file tn_sys.h.

21.18.2.2 _TN_BUILD_CFG_ARCH_STRUCT_FILL

#define _TN_BUILD_CFG_ARCH_STRUCT_FILL(

_p_struct)

For internal kernel usage: helper macro that fills architecture-dependent values.
This macro is used by #_TN_BUILD_CFG_STRUCT_FILL() only.
Definition at line 107 of file tn_sys.h.

21.18.2.3 _TN_BUILD_CFG_STRUCT_FILL

#define _TN_BUILD_CFG_STRUCT_FILL(

_p_struct)

Value:
{ \

memset((_p_struct), 0x00, sizeof(*(_p_struct))); \
\

(_p_struct)->priorities_cnt = TN_PRIORITIES_CNT; \
(_p_struct)->check_param = TN_CHECK_PARAM; \
(_p_struct)->debug = TN_DEBUG; \
(_p_struct)->use_mutexes = TN_USE_MUTEXES; \
(_p_struct)->mutex_rec = TN_MUTEX_REC; \
(_p_struct)->mutex_deadlock_detect = TN_MUTEX_DEADLOCK_DETECT; \
(_p_struct)->tick_lists_cnt_minus_one = (TN_TICK_LISTS_CNT - 1); \
(_p_struct)->api_make_alig_arg = TN_API_MAKE_ALIG_ARG; \
(_p_struct)->profiler = TN_PROFILER; \
(_p_struct)->profiler_wait_time = TN_PROFILER_WAIT_TIME; \
(_p_struct)->stack_overflow_check = TN_STACK_OVERFLOW_CHECK; \
(_p_struct)->dynamic_tick = TN_DYNAMIC_TICK; \
(_p_struct)->old_events_api = TN_OLD_EVENT_API; \

\
_TN_BUILD_CFG_ARCH_STRUCT_FILL(_p_struct); \

}

For internal kernel usage: fill the structure #_TN_BuildCfg with current build-time configuration values.

Parameters

_p_struct Pointer to struct #_TN_BuildCfg

Definition at line 119 of file tn_sys.h.

21.18.3 Typedef Documentation

Generated by Doxygen

140 File Documentation

21.18.3.1 TN_CBUserTaskCreate

typedef void() TN_CBUserTaskCreate(void)

User-provided callback function that is called directly from tn_sys_start() as a part of system startup routine;
it should merely create at least one (and typically just one) user's task, which should perform all the rest application
initialization.
When TN_CBUserTaskCreate() returned, the kernel performs first context switch to the task with highest
priority. If there are several tasks with highest priority, context is switched to the first created one.
Refer to the section Starting the kernel for details about system startup process on the whole.
Note: Although you're able to create more than one task here, it's usually not so good idea, because many things
typically should be done at startup before tasks can go on with their job: we need to initialize various on-board
peripherals (displays, flash memory chips, or whatever) as well as initialize software modules used by application.
So, if many tasks are created here, you have to provide some synchronization object so that tasks will wait until all
the initialization is done.
It's usually easier to maintain if we create just one task here, which firstly performs all the necessary initialization,
then creates the rest of your tasks, and eventually gets to its primary job (the job for which task was created at all).
For the usage example, refer to the page Starting the kernel.

Attention

• The only system service is allowed to call in this function is tn_task_create().

See also

tn_sys_start()

Definition at line 294 of file tn_sys.h.

21.18.3.2 TN_CBIdle

typedef void() TN_CBIdle(void)

User-provided callback function which is called repeatedly from the idle task loop.
Make sure that idle task has enough stack space to call this function.
Typically, this callback can be used for things like:

• MCU sleep/idle mode. When system has nothing to do, it often makes sense to bring processor to some
power-saving mode. Of course, the application is responsible for setting some condition to wake up: typically,
it's an interrupt.

• Calculation of system load. The easiest implementation is to just increment some variable in the idle task.
The faster value grows, the less busy system is.

Attention

• From withing this callback, it is illegal to invoke #tn_task_sleep() or any other service which could
put task to waiting state, because idle task (from which this function is called) should always be runnable,
by design. If #TN_DEBUG option is set, then this is checked, so if idle task becomes non-runnable, _←↩

TN_FATAL_ERROR() macro will be called.

See also

tn_sys_start()

Definition at line 321 of file tn_sys.h.

21.18.3.3 TN_CBStackOverflow

typedef void() TN_CBStackOverflow(struct TN_Task ∗task)
User-provided callback function that is called when the kernel detects stack overflow (see #TN_STACK_OVERF←↩

LOW_CHECK).

Generated by Doxygen

21.18 core/tn_sys.h File Reference 141

Parameters

task Task whose stack is overflowed

Definition at line 330 of file tn_sys.h.

21.18.3.4 TN_CBDeadlock

typedef void() TN_CBDeadlock(TN_BOOL active, struct TN_Mutex ∗mutex, struct TN_Task ∗task)
User-provided callback function that is called whenever deadlock becomes active or inactive.
Note: this feature works if only #TN_MUTEX_DEADLOCK_DETECT is non-zero.

Parameters

active Boolean value indicating whether deadlock becomes active or inactive. Note: deadlock might become
inactive if, for example, one of tasks involved in deadlock exits from waiting by timeout.

mutex mutex that is involved in deadlock. You may find out other mutexes involved by means of
mutex->deadlock_list.

task task that is involved in deadlock. You may find out other tasks involved by means of
task->deadlock_list.

Definition at line 350 of file tn_sys.h.

21.18.4 Enumeration Type Documentation

21.18.4.1 TN_StateFlag

enum TN_StateFlag

System state flags.

Enumerator

TN_STATE_FLAG__SYS_RUNNING system is running

TN_STATE_FLAG__DEADLOCK deadlock is active Note: this feature works if only
#TN_MUTEX_DEADLOCK_DETECT is non-zero.

See also

#TN_MUTEX_DEADLOCK_DETECT

Definition at line 232 of file tn_sys.h.

21.18.4.2 TN_Context

enum TN_Context

System context.

See also

tn_sys_context_get()

Generated by Doxygen

142 File Documentation

Enumerator

TN_CONTEXT_NONE None: this code is possible if only system is not running (flag
(#TN_STATE_FLAG__SYS_RUNNING is not set in the _tn_sys_state))

TN_CONTEXT_TASK Task context.
TN_CONTEXT_ISR ISR context.

Definition at line 248 of file tn_sys.h.

21.18.5 Function Documentation

21.18.5.1 tn_sys_start()

void tn_sys_start (

TN_UWord ∗ idle_task_stack,

unsigned int idle_task_stack_size,

TN_UWord ∗ int_stack,

unsigned int int_stack_size,

TN_CBUserTaskCreate ∗ cb_user_task_create,

TN_CBIdle ∗ cb_idle)

Initial TNeo system start function, never returns.
Typically called from main().
Refer to the Starting the kernel section for the usage example and additional comments.
(refer to Legend for details)

Parameters

idle_task_stack
Pointer to array for idle task stack. User must either use the macro
TN_STACK_ARR_DEF() for the definition of stack array, or allocate it manually as an
array of #TN_UWord with #TN_ARCH_STK_ATTR_BEFORE and
#TN_ARCH_STK_ATTR_AFTER macros.

idle_task_stack_size Size of idle task stack, in words (#TN_UWord)

int_stack
Pointer to array for interrupt stack. User must either use the macro
TN_STACK_ARR_DEF() for the definition of stack array, or allocate it manually as an
array of #TN_UWord with #TN_ARCH_STK_ATTR_BEFORE and
#TN_ARCH_STK_ATTR_AFTER macros.

int_stack_size
Size of interrupt stack, in words (#TN_UWord)

cb_user_task_create Callback function that should create initial user's task, see
#TN_CBUserTaskCreate for details.

cb_idle
Callback function repeatedly called from idle task, see #TN_CBIdle for details.

21.18.5.2 tn_tick_int_processing()

void tn_tick_int_processing (

void)

Process system tick; should be called periodically, typically from some kind of timer ISR.
The period of this timer is determined by user (typically 1 ms, but user is free to set different value)
Among other things, expired timers are fired from this function.
For further information, refer to Quick guide.

Generated by Doxygen

21.18 core/tn_sys.h File Reference 143

(refer to Legend for details)

21.18.5.3 tn_sys_tslice_set()

enum TN_RCode tn_sys_tslice_set (

int priority,

int ticks)

Set time slice ticks value for specified priority (see Round-robin scheduling).

(refer to Legend for details)

Parameters

priority Priority of tasks for which time slice value should be set

ticks Time slice value, in ticks. Set to #TN_NO_TIME_SLICE for no round-robin scheduling for given
priority (it's default value). Value can't be higher than #TN_MAX_TIME_SLICE.

Returns

• #TN_RC_OK on success;

• #TN_RC_WCONTEXT if called from wrong context;

• #TN_RC_WPARAM if given priority or ticks are invalid.

21.18.5.4 tn_sys_time_get()

TN_TickCnt tn_sys_time_get (

void)

Get current system ticks count.

(refer to Legend for details)

Returns

Current system ticks count.

21.18.5.5 tn_callback_deadlock_set()

void tn_callback_deadlock_set (

TN_CBDeadlock ∗ cb)

Set callback function that should be called whenever deadlock occurs or becomes inactive (say, if one of tasks
involved in the deadlock was released from wait because of timeout)
(refer to Legend for details)

Note: this function should be called from main(), before tn_sys_start().

Parameters

cb Pointer to user-provided callback function.

See also

#TN_MUTEX_DEADLOCK_DETECT

#TN_CBDeadlock for callback function prototype

Generated by Doxygen

144 File Documentation

21.18.5.6 tn_callback_stack_overflow_set()

void tn_callback_stack_overflow_set (

TN_CBStackOverflow ∗ cb)

Set callback function that is called when the kernel detects stack overflow (see #TN_STACK_OVERFLOW_CHE←↩

CK).
For function prototype, refer to #TN_CBStackOverflow.

21.18.5.7 tn_sys_state_flags_get()

enum TN_StateFlag tn_sys_state_flags_get (

void)

Returns current system state flags.

(refer to Legend for details)

21.18.5.8 tn_sys_context_get()

enum TN_Context tn_sys_context_get (

void)

Returns system context: task or ISR.

(refer to Legend for details)

See also

enum #TN_Context

21.18.5.9 tn_is_task_context()

_TN_STATIC_INLINE TN_BOOL tn_is_task_context (

void)

Returns whether current system context is #TN_CONTEXT_TASK

(refer to Legend for details)

Returns

TN_TRUE if current system context is #TN_CONTEXT_TASK, TN_FALSE otherwise.

See also

tn_sys_context_get()

enum #TN_Context

Definition at line 533 of file tn_sys.h.

21.18.5.10 tn_is_isr_context()

_TN_STATIC_INLINE TN_BOOL tn_is_isr_context (

void)

Returns whether current system context is #TN_CONTEXT_ISR

(refer to Legend for details)

Returns

TN_TRUE if current system context is #TN_CONTEXT_ISR, TN_FALSE otherwise.

Generated by Doxygen

21.18 core/tn_sys.h File Reference 145

See also

tn_sys_context_get()

enum #TN_Context

Definition at line 552 of file tn_sys.h.

21.18.5.11 tn_cur_task_get()

struct TN_Task∗ tn_cur_task_get (

void)

Returns pointer to the currently running task.

(refer to Legend for details)

21.18.5.12 tn_cur_task_body_get()

TN_TaskBody∗ tn_cur_task_body_get (

void)

Returns pointer to the body function of the currently running task.

(refer to Legend for details)

21.18.5.13 tn_sched_dis_save()

_TN_STATIC_INLINE TN_UWord tn_sched_dis_save (

void)

Disable kernel scheduler and return previous scheduler state.
Actual behavior depends on the platform:

• On Microchip platforms, only scheduler's interrupt gets disabled. All other interrupts are not affected, inde-
pendently of their priorities.

• On Cortex-M3/M4 platforms, we can only disable interrupts based on priority. So, this function disables all
interrupts with lowest priority (since scheduler works at lowest interrupt priority).

• On Cortex-M0/M0+, we have to disable all interrupts.

(refer to Legend for details)

Returns

State to be restored later by #tn_sched_restore()

Definition at line 595 of file tn_sys.h.

21.18.5.14 tn_sched_restore()

_TN_STATIC_INLINE void tn_sched_restore (

TN_UWord sched_state)

Restore state of the kernel scheduler.
See #tn_sched_dis_save().

(refer to Legend for details)

Parameters

sched_state Value returned from #tn_sched_dis_save()

Definition at line 611 of file tn_sys.h.

Generated by Doxygen

146 File Documentation

21.18.5.15 tn_callback_dyn_tick_set()

void tn_callback_dyn_tick_set (

TN_CBTickSchedule ∗ cb_tick_schedule,

TN_CBTickCntGet ∗ cb_tick_cnt_get)

Available if only TN_DYNAMIC_TICK is set.
Set callbacks related to dynamic tick.

Attention

This function should be called before tn_sys_start(), otherwise, you'll run into run-time error _TN_F←↩

ATAL_ERROR().

(refer to Legend for details)

Parameters

cb_tick_schedule Pointer to callback function to schedule next time to call
tn_tick_int_processing(), see #TN_CBTickSchedule for the prototype.

cb_tick_cnt_get Pointer to callback function to get current system tick counter value, see
#TN_CBTickCntGet for the prototype.

21.19 core/tn_tasks.h File Reference

21.19.1 Detailed Description

21.19.2 Task

In TNeo, a task is a branch of code that runs concurrently with other tasks from the programmer's point of view.
Indeed, tasks are actually executed using processor time sharing. Each task can be considered to be an independed
program, which executes in its own context (processor registers, stack pointer, etc.).
Actually, the term thread is more accurate than task, but the term task historically was used in TNKernel, so TNeo
keeps this convention.
When kernel decides that it's time to run another task, it performs context switch: current context (at least, values of
all registers) gets saved to the preempted task's stack, pointer to currently running task is altered as well as stack
pointer, and context gets restored from the stack of newly running task.

21.19.3 Task states

For list of task states and their description, refer to enum #TN_TaskState.

21.19.4 Creating/starting tasks

Create task and start task are two separate actions; although you can perform both of them in one step by passing
#TN_TASK_CREATE_OPT_START flag to the tn_task_create() function.

21.19.5 Stopping/deleting tasks

Stop task and delete task are two separate actions. If task was just stopped but not deleted, it can be just restarted
again by calling tn_task_activate(). If task was deleted, it can't be just activated: it should be re-created by
tn_task_create() first.
Task stops execution when:

• it calls tn_task_exit();

• it returns from its task body function (it is the equivalent to tn_task_exit(0))

• some other task calls tn_task_terminate() passing appropriate pointer to struct #TN_Task.

Generated by Doxygen

21.19 core/tn_tasks.h File Reference 147

21.19.6 Scheduling rules

TNeo always runs the most privileged task in state RUNNABLE. In no circumstances can task run while there is at
least one task is in the RUNNABLE state with higher priority. Task will run until:

• It becomes non-runnable (say, it may wait for something, etc)

• Some other task with higher priority becomes runnable.

Tasks with the same priority may be scheduled in round robin fashion by getting a predetermined time slice for
each task with this priority. Time slice is set separately for each priority. By default, round robin is turned off for all
priorities.

21.19.7 Idle task

TNeo has one system task: an idle task, which has lowest priority. It is always in the state RUNNABLE, and it runs
only when there are no other runnable tasks.
User can provide a callback function to be called from idle task, see TN_CBIdle. It is useful to bring the processor
to some kind of real idle state, so that device draws less current.

Data Structures

• struct TN_TaskTiming

Timing structure that is managed by profiler and can be read by #tn_task_profiler_timing_get() func-
tion.

• struct _TN_TaskProfiler

Internal kernel structure for profiling data of task.

• struct TN_Task

Task.

Enumerations

• enum TN_TaskState {
TN_TASK_STATE_NONE = 0, TN_TASK_STATE_RUNNABLE = (1 << 0), TN_TASK_STATE_WAIT = (1
<< 1), TN_TASK_STATE_SUSPEND = (1 << 2),
TN_TASK_STATE_WAITSUSP = (TN_TASK_STATE_WAIT | TN_TASK_STATE_SUSPEND), TN_TASK_STATE_DORMANT
= (1 << 3) }

Task state.

• enum TN_WaitReason {
TN_WAIT_REASON_NONE, TN_WAIT_REASON_SLEEP, TN_WAIT_REASON_SEM, TN_WAIT_REASON_EVENT,
TN_WAIT_REASON_DQUE_WSEND, TN_WAIT_REASON_DQUE_WRECEIVE, TN_WAIT_REASON_MUTEX_C,
TN_WAIT_REASON_MUTEX_I,
TN_WAIT_REASON_WFIXMEM, TN_WAIT_REASONS_CNT }

Task wait reason.

• enum TN_TaskCreateOpt { TN_TASK_CREATE_OPT_START = (1 << 0), _TN_TASK_CREATE_OPT_IDLE
= (1 << 1) }

Options for tn_task_create()

• enum TN_TaskExitOpt { TN_TASK_EXIT_OPT_DELETE = (1 << 0) }

Options for tn_task_exit()

Functions

• enum TN_RCode tn_task_create (struct TN_Task ∗task, TN_TaskBody ∗task_func, int priority, TN_UWord
∗task_stack_low_addr, int task_stack_size, void ∗param, enum TN_TaskCreateOpt opts)

Construct task and probably start it (depends on options, see below).

• enum TN_RCode tn_task_create_wname (struct TN_Task ∗task, TN_TaskBody ∗task_func, int priority,
TN_UWord ∗task_stack_low_addr, int task_stack_size, void ∗param, enum TN_TaskCreateOpt opts, const
char ∗name)

Generated by Doxygen

148 File Documentation

The same as tn_task_create() but with additional argument name, which could be very useful for debug.

• enum TN_RCode tn_task_suspend (struct TN_Task ∗task)

If the task is RUNNABLE, it is moved to the SUSPEND state.

• enum TN_RCode tn_task_resume (struct TN_Task ∗task)

Release task from SUSPEND state.

• enum TN_RCode tn_task_sleep (TN_TickCnt timeout)

Put current task to sleep for at most timeout ticks.

• enum TN_RCode tn_task_wakeup (struct TN_Task ∗task)

Wake up task from sleep.

• enum TN_RCode tn_task_iwakeup (struct TN_Task ∗task)

The same as tn_task_wakeup() but for using in the ISR.

• enum TN_RCode tn_task_activate (struct TN_Task ∗task)

Activate task that is in DORMANT state, that is, it was either just created by tn_task_create() without #TN_←↩

TASK_CREATE_OPT_START option, or terminated.

• enum TN_RCode tn_task_iactivate (struct TN_Task ∗task)

The same as tn_task_activate() but for using in the ISR.

• enum TN_RCode tn_task_release_wait (struct TN_Task ∗task)

Release task from WAIT state, independently of the reason of waiting.

• enum TN_RCode tn_task_irelease_wait (struct TN_Task ∗task)

The same as tn_task_release_wait() but for using in the ISR.

• void tn_task_exit (enum TN_TaskExitOpt opts)

This function terminates the currently running task.

• enum TN_RCode tn_task_terminate (struct TN_Task ∗task)

This function is similar to tn_task_exit() but it terminates any task other than currently running one.

• enum TN_RCode tn_task_delete (struct TN_Task ∗task)

This function deletes the task specified by the task.

• enum TN_RCode tn_task_state_get (struct TN_Task ∗task, enum TN_TaskState ∗p_state)

Get current state of the task; note that returned state is a bitmask, that is, states could be combined with each other.

• enum TN_RCode tn_task_profiler_timing_get (const struct TN_Task ∗task, struct TN_TaskTiming ∗tgt)

Read profiler timing data of the task.

• enum TN_RCode tn_task_change_priority (struct TN_Task ∗task, int new_priority)

Set new priority for task.

21.19.8 Enumeration Type Documentation

21.19.8.1 TN_TaskState

enum TN_TaskState

Task state.

Enumerator

TN_TASK_STATE_NONE This state should never be publicly available. It may be stored in task_state
only temporarily, while some system service is in progress.

TN_TASK_STATE_RUNNABLE Task is ready to run (it doesn't mean that it is running at the moment)

TN_TASK_STATE_WAIT Task is waiting. The reason of waiting can be obtained from
task_wait_reason field of the struct TN_Task.

See also

enum #TN_WaitReason

TN_TASK_STATE_SUSPEND Task is suspended (by some other task)

Generated by Doxygen

21.19 core/tn_tasks.h File Reference 149

Enumerator

TN_TASK_STATE_WAITSUSP Task was previously waiting, and after this it was suspended.

TN_TASK_STATE_DORMANT Task isn't yet activated or it was terminated by
tn_task_terminate().

Definition at line 141 of file tn_tasks.h.

21.19.8.2 TN_WaitReason

enum TN_WaitReason

Task wait reason.

Enumerator

TN_WAIT_REASON_NONE Task isn't waiting for anything.

TN_WAIT_REASON_SLEEP Task has called tn_task_sleep()

TN_WAIT_REASON_SEM Task waits to acquire a semaphore.

See also

tn_sem.h

TN_WAIT_REASON_EVENT Task waits for some event in the event group to be set.

See also

tn_eventgrp.h

TN_WAIT_REASON_DQUE_WSEND Task wants to put some data to the data queue, and there's no
space in the queue.

See also

tn_dqueue.h

TN_WAIT_REASON_DQUE_WRECEIVE Task wants to receive some data to the data queue, and there's
no data in the queue.

See also

tn_dqueue.h

TN_WAIT_REASON_MUTEX_C Task wants to lock a mutex with priority ceiling.

See also

tn_mutex.h

TN_WAIT_REASON_MUTEX_I Task wants to lock a mutex with priority inheritance.

See also

tn_mutex.h

TN_WAIT_REASON_WFIXMEM Task wants to get memory block from memory pool, and there's
no free memory blocks.

See also

tn_fmem.h

TN_WAIT_REASONS_CNT Wait reasons count.

Generated by Doxygen

150 File Documentation

Definition at line 173 of file tn_tasks.h.

21.19.8.3 TN_TaskCreateOpt

enum TN_TaskCreateOpt

Options for tn_task_create()

Enumerator

TN_TASK_CREATE_OPT_START whether task should be activated right after it is created. If this flag is not
set, user must activate task manually by calling
tn_task_activate().

_TN_TASK_CREATE_OPT_IDLE for internal kernel usage only: this option must be provided when
creating idle task

Definition at line 221 of file tn_tasks.h.

21.19.8.4 TN_TaskExitOpt

enum TN_TaskExitOpt

Options for tn_task_exit()

Enumerator

TN_TASK_EXIT_OPT_DELETE whether task should be deleted right after it is exited. If this flag is not set,
user must either delete it manually by calling tn_task_delete() or
re-activate it by calling tn_task_activate().

Definition at line 236 of file tn_tasks.h.

21.19.9 Function Documentation

21.19.9.1 tn_task_create()

enum TN_RCode tn_task_create (

struct TN_Task ∗ task,

TN_TaskBody ∗ task_func,

int priority,

TN_UWord ∗ task_stack_low_addr,

int task_stack_size,

void ∗ param,

enum TN_TaskCreateOpt opts)

Construct task and probably start it (depends on options, see below).
id_task member should not contain #TN_ID_TASK, otherwise, #TN_RC_WPARAM is returned.
Usage example:
#define MY_TASK_STACK_SIZE (TN_MIN_STACK_SIZE + 200)
#define MY_TASK_PRIORITY 5
struct TN_Task my_task;
//-- define stack array, we use convenience macro TN_STACK_ARR_DEF()
// for that
TN_STACK_ARR_DEF(my_task_stack, MY_TASK_STACK_SIZE);
void my_task_body(void *param)
{

//-- an endless loop
for (;;){

tn_task_sleep(1);
//-- probably do something useful

}
}

Generated by Doxygen

21.19 core/tn_tasks.h File Reference 151

And then, somewhere from other task or from the callback #TN_CBUserTaskCreate given to tn_sys_start()
:
enum TN_RCode rc = tn_task_create(

&my_task,
my_task_body,
MY_TASK_PRIORITY,
my_task_stack,
MY_TASK_STACK_SIZE,
TN_NULL, //-- parameter isn’t used
TN_TASK_CREATE_OPT_START //-- start task on creation
);

if (rc != TN_RC_OK){
//-- handle error

}

(refer to Legend for details)

Parameters

task Ready-allocated struct TN_Task structure. id_task member should not
contain #TN_ID_TASK, otherwise #TN_RC_WPARAM is returned.

task_func
Pointer to task body function.

priority Priority for new task. NOTE: the lower value, the higher priority. Must be > 0 and <
(#TN_PRIORITIES_CNT - 1).

task_stack_low_addr
Pointer to the stack for task. User must either use the macro
TN_STACK_ARR_DEF() for the definition of stack array, or allocate it manually as an
array of #TN_UWord with #TN_ARCH_STK_ATTR_BEFORE and
#TN_ARCH_STK_ATTR_AFTER macros.

task_stack_size Size of task stack array, in words (#TN_UWord), not in bytes.

param Parameter that is passed to task_func.

opts Options for task creation, refer to enum #TN_TaskCreateOpt

Returns

• #TN_RC_OK on success;

• #TN_RC_WCONTEXT if called from wrong context;

• #TN_RC_WPARAM if wrong params were given;

See also

#tn_task_create_wname()

#TN_ARCH_STK_ATTR_BEFORE

#TN_ARCH_STK_ATTR_AFTER

21.19.9.2 tn_task_suspend()

enum TN_RCode tn_task_suspend (

struct TN_Task ∗ task)

If the task is RUNNABLE, it is moved to the SUSPEND state.
If the task is in the WAIT state, it is moved to the WAIT+SUSPEND state. (waiting + suspended)

(refer to Legend for details)

Parameters

task Task to suspend

Generated by Doxygen

152 File Documentation

Returns

• #TN_RC_OK on success;

• #TN_RC_WCONTEXT if called from wrong context;

• #TN_RC_WSTATE if task is already suspended or dormant;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

See also

enum #TN_TaskState

21.19.9.3 tn_task_resume()

enum TN_RCode tn_task_resume (

struct TN_Task ∗ task)

Release task from SUSPEND state.
If the given task is in the SUSPEND state, it is moved to RUNNABLE state; afterwards it has the lowest precedence
among runnable tasks with the same priority. If the task is in WAIT+SUSPEND state, it is moved to WAIT state.

(refer to Legend for details)

Parameters

task Task to release from suspended state

Returns

• #TN_RC_OK on success;

• #TN_RC_WCONTEXT if called from wrong context;

• #TN_RC_WSTATE if task is not suspended;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

See also

enum TN_TaskState

21.19.9.4 tn_task_sleep()

enum TN_RCode tn_task_sleep (

TN_TickCnt timeout)

Put current task to sleep for at most timeout ticks.
When the timeout expires and the task was not suspended during the sleep, it is switched to runnable state. If the
timeout value is #TN_WAIT_INFINITE and the task was not suspended during the sleep, the task will sleep until
another function call (like tn_task_wakeup() or similar) will make it runnable.

(refer to Legend for details)

Parameters

timeout Refer to #TN_TickCnt

Generated by Doxygen

21.19 core/tn_tasks.h File Reference 153

Returns

• #TN_RC_TIMEOUT if task has slept specified timeout;

• #TN_RC_OK if task was woken up from other task by tn_task_wakeup()

• #TN_RC_FORCED if task was released from wait forcibly by tn_task_release_wait()

• #TN_RC_WCONTEXT if called from wrong context

See also

TN_TickCnt

21.19.9.5 tn_task_wakeup()

enum TN_RCode tn_task_wakeup (

struct TN_Task ∗ task)

Wake up task from sleep.
Task is woken up if only it sleeps because of call to tn_task_sleep(). If task sleeps for some another reason,
task won't be woken up, and tn_task_wakeup() returns #TN_RC_WSTATE.
After this call, tn_task_sleep() returns #TN_RC_OK.

(refer to Legend for details)

Parameters

task sleeping task to wake up

Returns

• #TN_RC_OK if successful

• #TN_RC_WSTATE if task is not sleeping, or it is sleeping for some reason other than tn_task_sleep()
call.

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.19.9.6 tn_task_iwakeup()

enum TN_RCode tn_task_iwakeup (

struct TN_Task ∗ task)

The same as tn_task_wakeup() but for using in the ISR.

(refer to Legend for details)

21.19.9.7 tn_task_activate()

enum TN_RCode tn_task_activate (

struct TN_Task ∗ task)

Activate task that is in DORMANT state, that is, it was either just created by tn_task_create() without #TN←↩

_TASK_CREATE_OPT_START option, or terminated.
Task is moved from DORMANT state to the RUNNABLE state.

(refer to Legend for details)

Parameters

task dormant task to activate

Generated by Doxygen

154 File Documentation

Returns

• #TN_RC_OK if successful

• #TN_RC_WSTATE if task is not dormant

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

See also

TN_TaskState

21.19.9.8 tn_task_iactivate()

enum TN_RCode tn_task_iactivate (

struct TN_Task ∗ task)

The same as tn_task_activate() but for using in the ISR.

(refer to Legend for details)

21.19.9.9 tn_task_release_wait()

enum TN_RCode tn_task_release_wait (

struct TN_Task ∗ task)

Release task from WAIT state, independently of the reason of waiting.
If task is in WAIT state, it is moved to RUNNABLE state. If task is in WAIT+SUSPEND state, it is moved to
SUSPEND state.
#TN_RC_FORCED is returned to the waiting task.

(refer to Legend for details)

Attention

Usage of this function is discouraged, since the need for it indicates bad software design

Parameters

task task waiting for anything

Returns

• #TN_RC_OK if successful

• #TN_RC_WSTATE if task is not waiting for anything

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

See also

TN_TaskState

21.19.9.10 tn_task_irelease_wait()

enum TN_RCode tn_task_irelease_wait (

struct TN_Task ∗ task)

Generated by Doxygen

21.19 core/tn_tasks.h File Reference 155

The same as tn_task_release_wait() but for using in the ISR.

(refer to Legend for details)

21.19.9.11 tn_task_exit()

void tn_task_exit (

enum TN_TaskExitOpt opts)

This function terminates the currently running task.
The task is moved to the DORMANT state.
After exiting, the task may be either deleted by the tn_task_delete() function call or reactivated by the
tn_task_activate() / tn_task_iactivate() function call. In this case task starts execution from be-
ginning (as after creation/activation). The task will have the lowest precedence among all tasks with the same
priority in the RUNNABLE state.
If this function is invoked with #TN_TASK_EXIT_OPT_DELETE option set, the task will be deleted after termina-
tion and cannot be reactivated (needs recreation).
Please note that returning from task body function has the same effect as calling tn_task_exit(0).

(refer to Legend for details)

Returns

Returns if only called from wrong context. Normally, it never returns (since calling task becomes terminated)

See also

#TN_TASK_EXIT_OPT_DELETE

tn_task_delete()

tn_task_activate()

tn_task_iactivate()

21.19.9.12 tn_task_terminate()

enum TN_RCode tn_task_terminate (

struct TN_Task ∗ task)

This function is similar to tn_task_exit() but it terminates any task other than currently running one.
After task is terminated, the task may be either deleted by the tn_task_delete() function call or reactivated by
the tn_task_activate() / tn_task_iactivate() function call. In this case task starts execution from
beginning (as after creation/activation). The task will have the lowest precedence among all tasks with the same
priority in the RUNNABLE state.

(refer to Legend for details)

Parameters

task task to terminate

Returns

• #TN_RC_OK if successful

• #TN_RC_WSTATE if task is already dormant

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

Generated by Doxygen

156 File Documentation

21.19.9.13 tn_task_delete()

enum TN_RCode tn_task_delete (

struct TN_Task ∗ task)

This function deletes the task specified by the task.
The task must be in the DORMANT state, otherwise #TN_RC_WCONTEXT will be returned.
This function resets the id_task field in the task structure to 0 and removes the task from the system tasks list.
The task can not be reactivated after this function call (the task must be recreated).

(refer to Legend for details)

Parameters

task dormant task to delete

Returns

• #TN_RC_OK if successful

• #TN_RC_WSTATE if task is not dormant

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.19.9.14 tn_task_state_get()

enum TN_RCode tn_task_state_get (

struct TN_Task ∗ task,

enum TN_TaskState ∗ p_state)

Get current state of the task; note that returned state is a bitmask, that is, states could be combined with each other.
Currently, only WAIT and SUSPEND states are allowed to be set together. Nevertheless, it would be probably good
idea to test individual bits in the returned value instead of plain comparing values.
Note that if something goes wrong, variable pointed to by p_state isn't touched.

(refer to Legend for details)

Parameters

task task to get state of

p_state pointer to the location where to store state of the task

Returns

state of the task

21.19.9.15 tn_task_profiler_timing_get()

enum TN_RCode tn_task_profiler_timing_get (

const struct TN_Task ∗ task,

struct TN_TaskTiming ∗ tgt)

Read profiler timing data of the task.
See struct #TN_TaskTiming for details on timing data.

(refer to Legend for details)

Generated by Doxygen

21.20 core/tn_timer.h File Reference 157

Parameters

task Task to get timing data of

tgt Target structure to fill with data, should be allocated by caller

21.19.9.16 tn_task_change_priority()

enum TN_RCode tn_task_change_priority (

struct TN_Task ∗ task,

int new_priority)

Set new priority for task.
If priority is 0, then task's base_priority is set.

(refer to Legend for details)

Attention

this function is obsolete and will probably be removed

21.20 core/tn_timer.h File Reference

21.20.1 Detailed Description

Timer is a kernel object that is used to ask the kernel to call some user-provided function at a particular time in the
future, based on the system timer tick.
If you need to repeatedly wake up particular task, you can create semaphore which you should wait for in the task,
and signal in the timer callback (remember that you should use tn_sem_isignal() in this callback, since it is
called from an ISR).
If you need to perform rather fast action (such as toggle some pin, or the like), consider doing that right in the timer
callback, in order to avoid context switch overhead.
The timer callback approach provides ultimate flexibility.
In the spirit of TNeo, timers are as lightweight as possible. That's why there is only one type of timer: the
single-shot timer. If you need your timer to fire repeatedly, you can easily restart it from the timer function by
the tn_timer_start(), so it's not a problem.
When timer fires, the user-provided function is called. Be aware of the following:

• Function is called from an ISR context (namely, from system timer ISR, by the tn_tick_int_processing());

• Function is called with global interrupts enabled.

Consequently:

• It's legal to call interrupt services from this function;

• You should make sure that your interrupt stack is enough for this function;

• The function should be as fast as possible;

See #TN_TimerFunc for the prototype of the function that could be scheduled.
TNeo offers two implementations of timers: static and dynamic. Refer to the page Time ticks for details.

21.20.2 Implementation of static timers

Although you don't have to understand the implementation of timers to use them, it is probably worth knowing,
particularly because the kernel have an option #TN_TICK_LISTS_CNT to customize the balance between per-
formance of tn_tick_int_processing() and memory occupied by timers.
The easiest implementation of timers could be something like this: we have just a single list with all active timers,
and at every system tick we should walk through all the timers in this list, and do the following with each timer:

Generated by Doxygen

158 File Documentation

• Decrement timeout by 1

• If new timeout is 0, then remove that timer from the list (i.e. make timer inactive), and fire the appropriate
timer function.

This approach has drawbacks:

• We can't manage timers from the function called by timer. If we do so (say, if we start new timer), then the
timer list gets modified. But we are currently iterating through this list, so, it's quite easy to mix things up.

• It is inefficient on rather large amount of timers and/or with large timeouts: we should iterate through all of
them each system tick.

The latter is probably not so critical in the embedded world since large amount of timers is unlikely there; whereas
the former is actually notable.
So, different approach was applied. The main idea is taken from the mainline Linux kernel source, but the implemen-
tation was simplified much because (1) embedded systems have much less resources, and (2) the kernel doesn't
need to scale as well as Linux does. You can read about Linux timers implementation in the book "Linux Device
Drivers", 3rd edition:

• Time, Delays, and Deferred Work

– Kernel Timers

* The Implementation of Kernel Timers

This book is freely available at http://lwn.net/Kernel/LDD3/ .
So, TNeo's implementation:
We have configurable value N that is a power of two, typical values are 4, 8 or 16.
If the timer expires in the next 1 to (N - 1) system ticks, it is added to one of the N lists (the so-called "tick" lists)
devoted to short-range timers using the least significant bits of the timeout value. If it expires farther in the future,
it is added to the "generic" list.
Each N-th system tick, all the timers from "generic" list are walked through, and the following is performed with each
timer:

• timeout value decremented by N

• if resulting timeout is less than N, timer is moved to the appropriate "tick" list.

At every system tick, all the timers from current "tick" list are fired unconditionally. This is an efficient and nice
solution.
The attentive reader may want to ask why do we use (N - 1) "tick" lists if we actually have N lists. That's because,
again, we want to be able to modify timers from the timer function. If we use N lists, and user wants to add new timer
with timeout equal to N, then new timer will be added to the same list which is iterated through at the moment,
and things will be mixed up.
If we use (N - 1) lists, we are guaranteed that new timers can't be added to the current "tick" list while we are
iterating through it. (although timer can be deleted from that list, but it's ok)
The N in the TNeo is configured by the compile-time option #TN_TICK_LISTS_CNT.

Data Structures

• struct TN_Timer

Timer.

Typedefs

• typedef void() TN_TimerFunc(struct TN_Timer ∗timer, void ∗p_user_data)

Prototype of the function that should be called by timer.

• typedef void() TN_CBTickSchedule(TN_TickCnt timeout)

Available if only TN_DYNAMIC_TICK is set.
• typedef TN_TickCnt() TN_CBTickCntGet(void)

Available if only TN_DYNAMIC_TICK is set.

Generated by Doxygen

http://lwn.net/Kernel/LDD3/

21.20 core/tn_timer.h File Reference 159

Functions

• enum TN_RCode tn_timer_create (struct TN_Timer ∗timer, TN_TimerFunc ∗func, void ∗p_user_data)

Construct the timer.

• enum TN_RCode tn_timer_delete (struct TN_Timer ∗timer)

Destruct the timer.

• enum TN_RCode tn_timer_start (struct TN_Timer ∗timer, TN_TickCnt timeout)

Start or restart the timer: that is, schedule the timer's function (given to tn_timer_create()) to be called later
by the kernel.

• enum TN_RCode tn_timer_cancel (struct TN_Timer ∗timer)

If timer is active, cancel it.

• enum TN_RCode tn_timer_set_func (struct TN_Timer ∗timer, TN_TimerFunc ∗func, void ∗p_user_data)

Set user-provided function and pointer to user data for the timer.

• enum TN_RCode tn_timer_is_active (struct TN_Timer ∗timer, TN_BOOL ∗p_is_active)

Returns whether given timer is active or inactive.

• enum TN_RCode tn_timer_time_left (struct TN_Timer ∗timer, TN_TickCnt ∗p_time_left)

Returns how many system timer ticks (at most) is left for the timer to expire.

21.20.3 Typedef Documentation

21.20.3.1 TN_TimerFunc

typedef void() TN_TimerFunc(struct TN_Timer ∗timer, void ∗p_user_data)
Prototype of the function that should be called by timer.
When timer fires, the user-provided function is called. Be aware of the following:

• Function is called from ISR context (namely, from system timer ISR, by the tn_tick_int_processing());

• Function is called with global interrupts enabled.

Consequently:

• It's legal to call interrupt services from this function;

• The function should be as fast as possible.

Parameters

timer Timer that caused function to be called
p_user_data The user-provided pointer given to tn_timer_create().

Definition at line 198 of file tn_timer.h.

21.20.3.2 TN_CBTickSchedule

typedef void() TN_CBTickSchedule(TN_TickCnt timeout)

Available if only TN_DYNAMIC_TICK is set.
Prototype of callback function that should schedule next time to call tn_tick_int_processing().
See tn_callback_dyn_tick_set()

Generated by Doxygen

160 File Documentation

Parameters

timeout Timeout after which tn_tick_int_processing() should be called next time. Note the
following:

• It might be #TN_WAIT_INFINITE, which means that there are no active timeouts, and so,
there's no need for tick interrupt at all.

• It might be 0; in this case, it's already time to call tn_tick_int_processing(). You
might want to set interrupt request bit then, in order to get to it as soon as possible.

• In other cases, the function should schedule next call to tn_tick_int_processing()
in the timeout tick periods.

Definition at line 268 of file tn_timer.h.

21.20.3.3 TN_CBTickCntGet

typedef TN_TickCnt() TN_CBTickCntGet(void)

Available if only TN_DYNAMIC_TICK is set.
Prototype of callback function that should return current system tick counter value.
See tn_callback_dyn_tick_set()

Returns

current system tick counter value.

Definition at line 280 of file tn_timer.h.

21.20.4 Function Documentation

21.20.4.1 tn_timer_create()

enum TN_RCode tn_timer_create (

struct TN_Timer ∗ timer,

TN_TimerFunc ∗ func,

void ∗ p_user_data)

Construct the timer.
id_timer field should not contain #TN_ID_TIMER, otherwise, #TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

timer Pointer to already allocated struct TN_Timer

func Function to be called by timer, can't be TN_NULL. See TN_TimerFunc()

p_user_data User data pointer that is given to user-provided func.

Returns

• #TN_RC_OK if timer was successfully created;

• #TN_RC_WPARAM if wrong params were given.

21.20.4.2 tn_timer_delete()

enum TN_RCode tn_timer_delete (

Generated by Doxygen

21.20 core/tn_timer.h File Reference 161

struct TN_Timer ∗ timer)

Destruct the timer.
If the timer is active, it is cancelled first.

(refer to Legend for details)

Parameters

timer timer to destruct

Returns

• #TN_RC_OK if timer was successfully deleted;

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.20.4.3 tn_timer_start()

enum TN_RCode tn_timer_start (

struct TN_Timer ∗ timer,

TN_TickCnt timeout)

Start or restart the timer: that is, schedule the timer's function (given to tn_timer_create()) to be called later
by the kernel.
See TN_TimerFunc().
It is legal to restart already active timer. In this case, the timer will be cancelled first.

(refer to Legend for details)

Parameters

timer Timer to start
timeout Number of system ticks after which timer should fire (i.e. function should be called). Note that

timeout can't be #TN_WAIT_INFINITE or 0.

Returns

• #TN_RC_OK if timer was successfully started;

• #TN_RC_WCONTEXT if called from wrong context;

• #TN_RC_WPARAM if wrong params were given: say, timeout is either #TN_WAIT_INFINITE or
0.

• If #TN_CHECK_PARAM is non-zero, additional return code is available: #TN_RC_INVALID_OBJ.

21.20.4.4 tn_timer_cancel()

enum TN_RCode tn_timer_cancel (

struct TN_Timer ∗ timer)

If timer is active, cancel it.
If timer is already inactive, nothing is changed.

(refer to Legend for details)

Parameters

timer Timer to cancel

Generated by Doxygen

162 File Documentation

Returns

• #TN_RC_OK if timer was successfully cancelled;

• #TN_RC_WCONTEXT if called from wrong context;

• If #TN_CHECK_PARAM is non-zero, additional return codes are available: #TN_RC_WPARAM and
#TN_RC_INVALID_OBJ.

21.20.4.5 tn_timer_set_func()

enum TN_RCode tn_timer_set_func (

struct TN_Timer ∗ timer,

TN_TimerFunc ∗ func,

void ∗ p_user_data)

Set user-provided function and pointer to user data for the timer.
Can be called if timer is either active or inactive.

(refer to Legend for details)

Parameters

timer Pointer to timer
func Function to be called by timer, can't be TN_NULL. See TN_TimerFunc()

p_user_data User data pointer that is given to user-provided func.

Returns

• #TN_RC_OK if operation was successfull;

• #TN_RC_WPARAM if wrong params were given.

21.20.4.6 tn_timer_is_active()

enum TN_RCode tn_timer_is_active (

struct TN_Timer ∗ timer,

TN_BOOL ∗ p_is_active)

Returns whether given timer is active or inactive.

(refer to Legend for details)

Parameters

timer Pointer to timer
p_is_active Pointer to #TN_BOOL variable in which resulting value should be stored

Returns

• #TN_RC_OK if operation was successfull;

• #TN_RC_WPARAM if wrong params were given.

21.20.4.7 tn_timer_time_left()

enum TN_RCode tn_timer_time_left (

struct TN_Timer ∗ timer,

TN_TickCnt ∗ p_time_left)

Generated by Doxygen

21.21 tn.h File Reference 163

Returns how many system timer ticks (at most) is left for the timer to expire.
If timer is inactive, 0 is returned.

(refer to Legend for details)

Parameters

timer Pointer to timer
p_time_left Pointer to #TN_TickCnt variable in which resulting value should be stored

Returns

• #TN_RC_OK if operation was successfull;

• #TN_RC_WPARAM if wrong params were given.

21.21 tn.h File Reference

21.21.1 Detailed Description

The main kernel header file that should be included by user application; it merely includes subsystem-specific kernel
headers.

21.22 tn_app_check.c File Reference

21.22.1 Detailed Description

If #TN_CHECK_BUILD_CFG option is non-zero, this file needs to be included in the application project.
For details, see the aforementioned option #TN_CHECK_BUILD_CFG.

Functions

• void you_should_add_file___tn_app_check_c___to_the_project (void)

Dummy function that helps user to undefstand that he/she forgot to add file tn_app_check.c to the project.

• const struct _TN_BuildCfg ∗ tn_app_build_cfg_get (void)

Return build configuration used for application.

21.22.2 Function Documentation

21.22.2.1 you_should_add_file___tn_app_check_c___to_the_project()

void you_should_add_file___tn_app_check_c___to_the_project (

void)

Dummy function that helps user to undefstand that he/she forgot to add file tn_app_check.c to the project.
It is called from tn_sys.c .
Definition at line 91 of file tn_app_check.c.

21.23 tn_cfg_default.h File Reference

21.23.1 Detailed Description

TNeo default configuration file, to be copied as tn_cfg.h.
This project is intended to be built as a library, separately from main project (although nothing prevents you from
bundling things together, if you want to).

Generated by Doxygen

164 File Documentation

There are various options available which affects API and behavior of the kernel. But these options are specific for
particular project, and aren't related to the kernel itself, so we need to keep them separately.
To this end, file tn.h (the main kernel header file) includes tn_cfg.h, which isn't included in the repository
(even more, it is added to .hgignore list actually). Instead, default configuration file tn_cfg_default.h is
provided, and when you just cloned the repository, you might want to copy it as tn_cfg.h. Or even better, if your
filesystem supports symbolic links, copy it somewhere to your main project's directory (so that you can add it to your
VCS there), and create symlink to it named tn_cfg.h in the TNeo source directory, like this:

$ cd /path/to/tneo/src
$ cp ./tn_cfg_default.h /path/to/main/project/lib_cfg/tn_cfg.h
$ ln -s /path/to/main/project/lib_cfg/tn_cfg.h ./tn_cfg.h

Default configuration file contains detailed comments, so you can read them and configure behavior as you like.

Macros

• #define TN_CHECK_BUILD_CFG 1

This option enables run-time check which ensures that build-time options for the kernel match ones for the application.

• #define TN_PRIORITIES_CNT TN_PRIORITIES_MAX_CNT

Number of priorities that can be used by application, plus one for idle task (which has the lowest priority).

• #define TN_CHECK_PARAM 1

Enables additional param checking for most of the system functions.

• #define TN_DEBUG 0

Allows additional internal self-checking, useful to catch internal TNeo bugs as well as illegal kernel usage (e.g.

• #define TN_OLD_TNKERNEL_NAMES 1

Whether old TNKernel names (definitions, functions, etc) should be available.

• #define TN_USE_MUTEXES 1

Whether mutexes API should be available.

• #define TN_MUTEX_REC 1

Whether mutexes should allow recursive locking/unlocking.

• #define TN_MUTEX_DEADLOCK_DETECT 1

Whether RTOS should detect deadlocks and notify user about them via callback.

• #define TN_TICK_LISTS_CNT 8

Takes effect if only #TN_DYNAMIC_TICK is not set.

• #define TN_API_MAKE_ALIG_ARG TN_API_MAKE_ALIG_ARG__SIZE

API option for MAKE_ALIG() macro.

• #define TN_PROFILER 0

Whether profiler functionality should be enabled.

• #define TN_PROFILER_WAIT_TIME 0

Whether profiler should store wait time for each wait reason.

• #define TN_INIT_INTERRUPT_STACK_SPACE 1

Whether interrupt stack space should be initialized with #TN_FILL_STACK_VAL on system start.

• #define TN_STACK_OVERFLOW_CHECK 1

Whether software stack overflow check is enabled.

• #define TN_DYNAMIC_TICK 0

Whether the kernel should use Dynamic tick scheme instead of Static tick.

• #define TN_OLD_EVENT_API 0

Whether the old TNKernel events API compatibility mode is active.

• #define TN_FORCED_INLINE 1

Whether the kernel should use compiler-specific forced inline qualifiers (if possible) instead of "usual" inline, which
is just a hint for the compiler.

• #define TN_MAX_INLINE 0

Whether a maximum of reasonable functions should be inlined.

• #define TN_P24_SYS_IPL 4

Maximum system interrupt priority.

Generated by Doxygen

21.23 tn_cfg_default.h File Reference 165

21.23.2 Macro Definition Documentation

21.23.2.1 TN_CHECK_BUILD_CFG

#define TN_CHECK_BUILD_CFG 1

This option enables run-time check which ensures that build-time options for the kernel match ones for the applica-
tion.
Without this check, it is possible that you change your tn_cfg.h file, and just rebuild your application without
rebuilding the kernel. Then, application would assume that kernel behaves accordingly to tn_cfg.h which was
included in the application, but this is actually not true: you need to rebuild the kernel for changes to take effect.
With this option turned on, if build-time configurations don't match, you will get run-time error (_TN_FATAL_E←↩

RROR()) inside tn_sys_start(), which is much more informative than weird bugs caused by configuration
mismatch.
Note: turning this option on makes sense if only you use TNeo as a separate library. If you build TNeo together
with the application, both the kernel and the application always use the same tn_cfg.h file, therefore this option
is useless.

Attention

If this option is on, your application must include the file tn_app_check.c.

Definition at line 107 of file tn_cfg_default.h.

21.23.2.2 TN_PRIORITIES_CNT

#define TN_PRIORITIES_CNT TN_PRIORITIES_MAX_CNT

Number of priorities that can be used by application, plus one for idle task (which has the lowest priority).
This value can't be higher than architecture-dependent value #TN_PRIORITIES_MAX_CNT, which typically
equals to width of int type. So, for 32-bit systems, max number of priorities is 32.
But usually, application needs much less: I can imagine at most 4-5 different priorities, plus one for the idle task.
Do note also that each possible priority level takes RAM: two pointers for linked list and one short for time slice
value, so on 32-bit system it takes 10 bytes. So, with default value of 32 priorities available, it takes 320 bytes. If
you set it, say, to 5, you save 270 bytes, which might be notable.
Default: #TN_PRIORITIES_MAX_CNT.
Definition at line 130 of file tn_cfg_default.h.

21.23.2.3 TN_CHECK_PARAM

#define TN_CHECK_PARAM 1

Enables additional param checking for most of the system functions.
It's surely useful for debug, but probably better to remove in release. If it is set, most of the system functions are
able to return two additional codes:

• #TN_RC_WPARAM if wrong params were given;

• #TN_RC_INVALID_OBJ if given pointer doesn't point to a valid object. Object validity is checked by means
of the special ID field of type enum #TN_ObjId.

See also

enum #TN_ObjId

Definition at line 147 of file tn_cfg_default.h.

Generated by Doxygen

166 File Documentation

21.23.2.4 TN_DEBUG

#define TN_DEBUG 0

Allows additional internal self-checking, useful to catch internal TNeo bugs as well as illegal kernel usage (e.g.
sleeping in the idle task callback). Produces a couple of extra instructions which usually just causes debugger to
stop if something goes wrong.
Definition at line 157 of file tn_cfg_default.h.

21.23.2.5 TN_OLD_TNKERNEL_NAMES

#define TN_OLD_TNKERNEL_NAMES 1

Whether old TNKernel names (definitions, functions, etc) should be available.
If you're porting your existing application written for TNKernel, it is definitely worth enabling. If you start new project
with TNeo from scratch, it's better to avoid old names.
Definition at line 167 of file tn_cfg_default.h.

21.23.2.6 TN_MUTEX_DEADLOCK_DETECT

#define TN_MUTEX_DEADLOCK_DETECT 1

Whether RTOS should detect deadlocks and notify user about them via callback.

See also

see tn_callback_deadlock_set()

see #TN_CBDeadlock

Definition at line 192 of file tn_cfg_default.h.

21.23.2.7 TN_TICK_LISTS_CNT

#define TN_TICK_LISTS_CNT 8

Takes effect if only #TN_DYNAMIC_TICK is not set.
Number of "tick" lists of timers, must be a power or two; minimum value: 2; typical values: 4, 8 or 16.
Refer to the Implementation of static timers for details.
Shortly: this value represents number of elements in the array of struct TN_ListItem, on 32-bit system each
element takes 8 bytes.
The larger value, the more memory is needed, and the faster system timer ISR works. If your application has a lot
of timers and/or sleeping tasks, consider incrementing this value; otherwise, default value should work for you.
Definition at line 213 of file tn_cfg_default.h.

21.23.2.8 TN_API_MAKE_ALIG_ARG

#define TN_API_MAKE_ALIG_ARG TN_API_MAKE_ALIG_ARG__SIZE

API option for MAKE_ALIG() macro.
There is a terrible mess with MAKE_ALIG() macro: original TNKernel docs specify that the argument of it should
be the size to align, but almost all ports, including "original" one, defined it so that it takes type, not size.
But the port by AlexB implemented it differently (i.e. accordingly to the docs)
When I was moving from the port by AlexB to another one, do you have any idea how much time it took me to figure
out why do I have rare weird bug? :)
So, available options:

• #TN_API_MAKE_ALIG_ARG__TYPE: In this case, you should use macro like this: TN_MAKE_ALI←↩

G(struct my_struct) This way is used in the majority of TNKernel ports. (actually, in all ports except
the one by AlexB)

• #TN_API_MAKE_ALIG_ARG__SIZE: In this case, you should use macro like this: TN_MAKE_ALI←↩

G(sizeof(struct my_struct)) This way is stated in TNKernel docs and used in the port for dsPI←↩

C/PIC24/PIC32 by AlexB.

Generated by Doxygen

21.23 tn_cfg_default.h File Reference 167

Definition at line 245 of file tn_cfg_default.h.

21.23.2.9 TN_PROFILER

#define TN_PROFILER 0

Whether profiler functionality should be enabled.
Enabling this option adds overhead to context switching and increases the size of #TN_Task structure by about
20 bytes.

See also

#TN_PROFILER_WAIT_TIME

#tn_task_profiler_timing_get()

struct #TN_TaskTiming

Definition at line 259 of file tn_cfg_default.h.

21.23.2.10 TN_PROFILER_WAIT_TIME

#define TN_PROFILER_WAIT_TIME 0

Whether profiler should store wait time for each wait reason.
Enabling this option bumps the size of #TN_Task structure by more than 100 bytes, see struct
#TN_TaskTiming.
Relevant if only #TN_PROFILER is non-zero.
Definition at line 270 of file tn_cfg_default.h.

21.23.2.11 TN_INIT_INTERRUPT_STACK_SPACE

#define TN_INIT_INTERRUPT_STACK_SPACE 1

Whether interrupt stack space should be initialized with #TN_FILL_STACK_VAL on system start.
It is useful to disable this option if you don't want to allocate separate array for interrupt stack, but use initialization
stack for it.
Definition at line 280 of file tn_cfg_default.h.

21.23.2.12 TN_STACK_OVERFLOW_CHECK

#define TN_STACK_OVERFLOW_CHECK 1

Whether software stack overflow check is enabled.
Enabling this option adds small overhead to context switching and system tick processing (#tn_tick_int_processing()),
it also reduces the payload of task stacks by just one word (#TN_UWord) for each stack.
When stack overflow happens, the kernel calls user-provided callback (see #tn_callback_stack_overflow_set());
if this callback is undefined, the kernel calls #_TN_FATAL_ERROR().
This option is on by default for all architectures except PIC24/dsPIC, since this architecture has hardware stack
pointer limit, unlike the others.

Attention

It is not an absolute guarantee that the kernel will detect any stack overflow. The kernel tries to detect stack
overflow by checking the latest address of stack, which should have special value #TN_FILL_STACK_VAL.

So stack overflow is detected if only the overflow caused this value to corrupt, which isn't always the case.

More, the check is performed only at context switch and timer tick processing, which may be too late.

Nevertheless, from my personal experience, it helps to catch stack overflow bugs a lot.
Definition at line 324 of file tn_cfg_default.h.

Generated by Doxygen

168 File Documentation

21.23.2.13 TN_OLD_EVENT_API

#define TN_OLD_EVENT_API 0

Whether the old TNKernel events API compatibility mode is active.

Warning

Use it if only you're porting your existing TNKernel project on TNeo. Otherwise, usage of this option is strongly
discouraged.

Actually, events are the most incompatible thing between TNeo and TNKernel (for some details, refer to the section
Events API is changed almost completely)
This option is quite useful when you're porting your existing TNKernel app to TNeo. When it is non-zero, old events
symbols are available and behave just like they do in TNKernel.
The full list of what becomes available:

• Event group attributes:

– #TN_EVENT_ATTR_SINGLE

– #TN_EVENT_ATTR_MULTI

– #TN_EVENT_ATTR_CLR

• Functions:

– #tn_event_create()

– #tn_event_delete()

– #tn_event_wait()

– #tn_event_wait_polling()

– #tn_event_iwait()

– #tn_event_set()

– #tn_event_iset()

– #tn_event_clear()

– #tn_event_iclear()

Definition at line 370 of file tn_cfg_default.h.

21.23.2.14 TN_MAX_INLINE

#define TN_MAX_INLINE 0

Whether a maximum of reasonable functions should be inlined.
Depending of the configuration this may increase the size of the kernel, but it will also improve the performance.
Definition at line 389 of file tn_cfg_default.h.

21.23.2.15 TN_P24_SYS_IPL

#define TN_P24_SYS_IPL 4

Maximum system interrupt priority.
For details on system interrupts on PIC24/dsPIC, refer to the section PIC24/dsPIC interrupts.
Should be >= 1 and <= 6. Default: 4.
Definition at line 408 of file tn_cfg_default.h.

Generated by Doxygen

Index

_TN_BUILD_CFG_ARCH_STRUCT_FILL
tn_sys.h, 139

_TN_BUILD_CFG_STRUCT_FILL
tn_sys.h, 139

_TN_BuildCfg, 61
_TN_FATAL_ERRORF

tn_arch_example.h, 80
_TN_FFS

tn_arch_example.h, 80
_TN_INLINE

tn_arch_example.h, 84
_TN_SIZE_BYTES_TO_UWORDS

tn_arch_example.h, 84
_TN_STRINGIFY_LITERAL

tn_common_macros.h, 103
_TN_STRINGIFY_MACRO

tn_common_macros.h, 104
_TN_TASK_CREATE_OPT_IDLE

tn_tasks.h, 150
_TN_TaskProfiler, 62

last_wait_reason, 62
timing, 63

_TN_UNUSED
tn_common.h, 100

_TN_VOLATILE_WORKAROUND
tn_arch_example.h, 84

_tn_arch_context_switch_now_nosave
tn_arch.h, 97

_tn_arch_context_switch_pend
tn_arch.h, 96

_tn_arch_inside_isr
tn_arch.h, 96

_tn_arch_is_int_disabled
tn_arch.h, 96

_tn_arch_stack_init
tn_arch.h, 95

_tn_arch_sys_start
tn_arch.h, 97

arch/cortex_m/tn_arch_cortex_m.h, 79
arch/example/tn_arch_example.h, 79
arch/pic24_dspic/tn_arch_pic24.h, 85
arch/pic24_dspic/tn_arch_pic24_bfa.h, 86
arch/pic32/tn_arch_pic32.h, 88
arch/pic32/tn_arch_pic32_bfa.h, 91
arch/tn_arch.h, 93

block_size
TN_FMem, 67

core/tn_cfg_dispatch.h, 98
core/tn_common.h, 99
core/tn_common_macros.h, 103
core/tn_dqueue.h, 104
core/tn_eventgrp.h, 111
core/tn_fmem.h, 118
core/tn_list.h, 124
core/tn_mutex.h, 124
core/tn_oldsymbols.h, 128
core/tn_sem.h, 134
core/tn_sys.h, 137
core/tn_tasks.h, 146
core/tn_timer.h, 157

deadlock_list
TN_Task, 72

free_list
TN_FMem, 67

got_running_cnt
TN_TaskTiming, 74

id_dque
TN_DQueue, 64

id_event
TN_EventGrp, 66

id_fmp
TN_FMem, 67

id_mutex
TN_Mutex, 69

id_sem
TN_Sem, 70

id_task
TN_Task, 72

id_timer
TN_Timer, 76

last_wait_reason
_TN_TaskProfiler, 62

MAKE_ALIG
tn_oldsymbols.h, 131

max_consecutive_wait_time
TN_TaskTiming, 75

priority_already_updated
TN_Task, 73

stack_high_addr
TN_Task, 72

170 INDEX

stack_low_addr
TN_Task, 72

start_tick_cnt
TN_Timer, 76

subsys_wait
TN_Task, 73

timeout
TN_Timer, 76

timeout_cur
TN_Timer, 77

timing
_TN_TaskProfiler, 63

tn.h, 163
TN_API_MAKE_ALIG_ARG

tn_cfg_default.h, 166
TN_API_MAKE_ALIG_ARG__SIZE

tn_cfg_dispatch.h, 98
TN_API_MAKE_ALIG_ARG__TYPE

tn_cfg_dispatch.h, 98
tn_app_check.c, 163

you_should_add_file___tn_app_check_c___to_the_project,
163

tn_arch.h
_tn_arch_context_switch_now_nosave, 97
_tn_arch_context_switch_pend, 96
_tn_arch_inside_isr, 96
_tn_arch_is_int_disabled, 96
_tn_arch_stack_init, 95
_tn_arch_sys_start, 97
tn_arch_int_dis, 94
tn_arch_int_en, 94
tn_arch_sched_dis_save, 95
tn_arch_sched_restore, 95
tn_arch_sr_restore, 94
tn_arch_sr_save_int_dis, 94

tn_arch_example.h
_TN_FATAL_ERRORF, 80
_TN_FFS, 80
_TN_INLINE, 84
_TN_SIZE_BYTES_TO_UWORDS, 84
_TN_VOLATILE_WORKAROUND, 84
TN_ARCH_STK_ATTR_AFTER, 81
TN_ARCH_STK_ATTR_BEFORE, 81
TN_INT_DIS_SAVE, 82
TN_INT_IDIS_SAVE, 83
TN_INT_IRESTORE, 83
TN_INT_RESTORE, 83
TN_INTSAVE_DATA, 82
TN_INTSAVE_DATA_INT, 82
TN_PRIORITIES_MAX_CNT, 81
TN_UIntPtr, 85
TN_UWord, 85

tn_arch_int_dis
tn_arch.h, 94

tn_arch_int_en
tn_arch.h, 94

tn_arch_pic24.h
tn_p24_soft_isr, 85

tn_arch_pic24_bfa.h
TN_BFA, 87
TN_BFAR, 87

tn_arch_pic32.h
tn_p32_int_nest_count, 90
tn_p32_int_sp, 90
tn_p32_soft_isr, 89
tn_p32_srs_isr, 89
tn_p32_user_sp, 90

tn_arch_pic32_bfa.h
TN_BFA, 91
TN_BFAR, 92

tn_arch_sched_dis_save
tn_arch.h, 95

tn_arch_sched_restore
tn_arch.h, 95

tn_arch_sr_restore
tn_arch.h, 94

tn_arch_sr_save_int_dis
tn_arch.h, 94

TN_ARCH_STK_ATTR_AFTER
tn_arch_example.h, 81

TN_ARCH_STK_ATTR_BEFORE
tn_arch_example.h, 81

TN_BFA
tn_arch_pic24_bfa.h, 87
tn_arch_pic32_bfa.h, 91

TN_BFAR
tn_arch_pic24_bfa.h, 87
tn_arch_pic32_bfa.h, 92

tn_callback_deadlock_set
tn_sys.h, 143

tn_callback_dyn_tick_set
tn_sys.h, 146

tn_callback_stack_overflow_set
tn_sys.h, 143

TN_CBDeadlock
tn_sys.h, 141

TN_CBIdle
tn_sys.h, 140

TN_CBStackOverflow
tn_sys.h, 140

TN_CBTickCntGet
tn_timer.h, 160

TN_CBTickSchedule
tn_timer.h, 159

TN_CBUserTaskCreate
tn_sys.h, 139

tn_cfg_default.h, 163
TN_API_MAKE_ALIG_ARG, 166
TN_CHECK_BUILD_CFG, 165
TN_CHECK_PARAM, 165
TN_DEBUG, 165
TN_INIT_INTERRUPT_STACK_SPACE, 167
TN_MAX_INLINE, 168
TN_MUTEX_DEADLOCK_DETECT, 166
TN_OLD_EVENT_API, 167
TN_OLD_TNKERNEL_NAMES, 166

Generated by Doxygen

INDEX 171

TN_P24_SYS_IPL, 168
TN_PRIORITIES_CNT, 165
TN_PROFILER, 167
TN_PROFILER_WAIT_TIME, 167
TN_STACK_OVERFLOW_CHECK, 167
TN_TICK_LISTS_CNT, 166

tn_cfg_dispatch.h
TN_API_MAKE_ALIG_ARG__SIZE, 98
TN_API_MAKE_ALIG_ARG__TYPE, 98

TN_CHECK_BUILD_CFG
tn_cfg_default.h, 165

TN_CHECK_PARAM
tn_cfg_default.h, 165

tn_common.h
_TN_UNUSED, 100
TN_ID_DATAQUEUE, 102
TN_ID_EVENTGRP, 102
TN_ID_EXCHANGE, 102
TN_ID_EXCHANGE_LINK, 102
TN_ID_FSMEMORYPOOL, 102
TN_ID_MUTEX, 102
TN_ID_NONE, 102
TN_ID_SEMAPHORE, 102
TN_ID_TASK, 102
TN_ID_TIMER, 102
TN_MAKE_ALIG_SIZE, 100
TN_ObjId, 101
TN_RC_DELETED, 103
TN_RC_FORCED, 103
TN_RC_ILLEGAL_USE, 103
TN_RC_INTERNAL, 103
TN_RC_INVALID_OBJ, 103
TN_RC_OK, 102
TN_RC_OVERFLOW, 102
TN_RC_TIMEOUT, 102
TN_RC_WCONTEXT, 102
TN_RC_WPARAM, 103
TN_RC_WSTATE, 103
TN_RCode, 102
TN_TickCnt, 100

tn_common_macros.h
_TN_STRINGIFY_LITERAL, 103
_TN_STRINGIFY_MACRO, 104

TN_Context
tn_sys.h, 141

TN_CONTEXT_ISR
tn_sys.h, 142

TN_CONTEXT_NONE
tn_sys.h, 142

TN_CONTEXT_TASK
tn_sys.h, 142

tn_cur_task_body_get
tn_sys.h, 145

tn_cur_task_get
tn_sys.h, 145

TN_DEBUG
tn_cfg_default.h, 165

TN_DQueue, 63

id_dque, 64
tn_dqueue.h

tn_queue_create, 105
tn_queue_delete, 106
tn_queue_eventgrp_connect, 110
tn_queue_eventgrp_disconnect, 111
tn_queue_free_items_cnt_get, 110
tn_queue_ireceive_polling, 109
tn_queue_isend_polling, 108
tn_queue_receive, 108
tn_queue_receive_polling, 109
tn_queue_send, 106
tn_queue_send_polling, 108
tn_queue_used_items_cnt_get, 110

TN_DQueueTaskWait, 64
TN_EGrpAttr

tn_eventgrp.h, 114
TN_EGrpLink, 64
TN_EGrpOp

tn_eventgrp.h, 113
TN_EGrpTaskWait, 65
TN_EGrpWaitMode

tn_eventgrp.h, 113
TN_EVENT_ATTR_CLR

tn_oldsymbols.h, 132
TN_EVENT_ATTR_MULTI

tn_oldsymbols.h, 131
TN_EVENT_ATTR_SINGLE

tn_oldsymbols.h, 131
tn_event_clear

tn_oldsymbols.h, 133
tn_event_create

tn_oldsymbols.h, 132
tn_event_delete

tn_oldsymbols.h, 132
tn_event_iclear

tn_oldsymbols.h, 134
tn_event_iset

tn_oldsymbols.h, 133
tn_event_iwait

tn_oldsymbols.h, 133
tn_event_set

tn_oldsymbols.h, 133
tn_event_wait

tn_oldsymbols.h, 132
tn_event_wait_polling

tn_oldsymbols.h, 132
TN_EventGrp, 65

id_event, 66
tn_eventgrp.h

TN_EGrpAttr, 114
TN_EGrpOp, 113
TN_EGrpWaitMode, 113
TN_EVENTGRP_ATTR_CLR, 115
TN_EVENTGRP_ATTR_MULTI, 114
TN_EVENTGRP_ATTR_NONE, 115
TN_EVENTGRP_ATTR_SINGLE, 114
tn_eventgrp_create, 115

Generated by Doxygen

172 INDEX

tn_eventgrp_create_wattr, 115
tn_eventgrp_delete, 116
tn_eventgrp_imodify, 118
tn_eventgrp_iwait_polling, 117
tn_eventgrp_modify, 117
TN_EVENTGRP_OP_CLEAR, 114
TN_EVENTGRP_OP_SET, 114
TN_EVENTGRP_OP_TOGGLE, 114
tn_eventgrp_wait, 116
tn_eventgrp_wait_polling, 117
TN_EVENTGRP_WMODE_AND, 113
TN_EVENTGRP_WMODE_AUTOCLR, 113
TN_EVENTGRP_WMODE_OR, 113

TN_EVENTGRP_ATTR_CLR
tn_eventgrp.h, 115

TN_EVENTGRP_ATTR_MULTI
tn_eventgrp.h, 114

TN_EVENTGRP_ATTR_NONE
tn_eventgrp.h, 115

TN_EVENTGRP_ATTR_SINGLE
tn_eventgrp.h, 114

tn_eventgrp_create
tn_eventgrp.h, 115

tn_eventgrp_create_wattr
tn_eventgrp.h, 115

tn_eventgrp_delete
tn_eventgrp.h, 116

tn_eventgrp_imodify
tn_eventgrp.h, 118

tn_eventgrp_iwait_polling
tn_eventgrp.h, 117

tn_eventgrp_modify
tn_eventgrp.h, 117

TN_EVENTGRP_OP_CLEAR
tn_eventgrp.h, 114

TN_EVENTGRP_OP_SET
tn_eventgrp.h, 114

TN_EVENTGRP_OP_TOGGLE
tn_eventgrp.h, 114

tn_eventgrp_wait
tn_eventgrp.h, 116

tn_eventgrp_wait_polling
tn_eventgrp.h, 117

TN_EVENTGRP_WMODE_AND
tn_eventgrp.h, 113

TN_EVENTGRP_WMODE_AUTOCLR
tn_eventgrp.h, 113

TN_EVENTGRP_WMODE_OR
tn_eventgrp.h, 113

TN_FMem, 66
block_size, 67
free_list, 67
id_fmp, 67

tn_fmem.h
TN_FMEM_BUF_DEF, 119
tn_fmem_create, 120
tn_fmem_delete, 121
tn_fmem_free_blocks_cnt_get, 123

tn_fmem_get, 121
tn_fmem_get_polling, 122
tn_fmem_iget_polling, 122
tn_fmem_irelease, 123
tn_fmem_release, 122
tn_fmem_used_blocks_cnt_get, 123

TN_FMEM_BUF_DEF
tn_fmem.h, 119

tn_fmem_create
tn_fmem.h, 120

tn_fmem_delete
tn_fmem.h, 121

tn_fmem_free_blocks_cnt_get
tn_fmem.h, 123

tn_fmem_get
tn_fmem.h, 121

tn_fmem_get_polling
tn_fmem.h, 122

tn_fmem_iget_polling
tn_fmem.h, 122

tn_fmem_irelease
tn_fmem.h, 123

tn_fmem_release
tn_fmem.h, 122

tn_fmem_used_blocks_cnt_get
tn_fmem.h, 123

TN_FMemTaskWait, 67
TN_ID_DATAQUEUE

tn_common.h, 102
TN_ID_EVENTGRP

tn_common.h, 102
TN_ID_EXCHANGE

tn_common.h, 102
TN_ID_EXCHANGE_LINK

tn_common.h, 102
TN_ID_FSMEMORYPOOL

tn_common.h, 102
TN_ID_MUTEX

tn_common.h, 102
TN_ID_NONE

tn_common.h, 102
TN_ID_SEMAPHORE

tn_common.h, 102
TN_ID_TASK

tn_common.h, 102
TN_ID_TIMER

tn_common.h, 102
TN_INIT_INTERRUPT_STACK_SPACE

tn_cfg_default.h, 167
TN_INT_DIS_SAVE

tn_arch_example.h, 82
TN_INT_IDIS_SAVE

tn_arch_example.h, 83
TN_INT_IRESTORE

tn_arch_example.h, 83
TN_INT_RESTORE

tn_arch_example.h, 83
TN_INTSAVE_DATA

Generated by Doxygen

INDEX 173

tn_arch_example.h, 82
TN_INTSAVE_DATA_INT

tn_arch_example.h, 82
tn_is_isr_context

tn_sys.h, 144
tn_is_task_context

tn_sys.h, 144
TN_ListItem, 68
TN_MAKE_ALIG_SIZE

tn_common.h, 100
TN_MAX_INLINE

tn_cfg_default.h, 168
TN_Mutex, 68

id_mutex, 69
tn_mutex.h

tn_mutex_create, 126
tn_mutex_delete, 126
tn_mutex_lock, 126
tn_mutex_lock_polling, 127
TN_MUTEX_PROT_CEILING, 125
TN_MUTEX_PROT_INHERIT, 125
tn_mutex_unlock, 127
TN_MutexProtocol, 125

tn_mutex_create
tn_mutex.h, 126

TN_MUTEX_DEADLOCK_DETECT
tn_cfg_default.h, 166

tn_mutex_delete
tn_mutex.h, 126

tn_mutex_lock
tn_mutex.h, 126

tn_mutex_lock_polling
tn_mutex.h, 127

TN_MUTEX_PROT_CEILING
tn_mutex.h, 125

TN_MUTEX_PROT_INHERIT
tn_mutex.h, 125

tn_mutex_unlock
tn_mutex.h, 127

TN_MutexProtocol
tn_mutex.h, 125

TN_ObjId
tn_common.h, 101

TN_OLD_EVENT_API
tn_cfg_default.h, 167

TN_OLD_TNKERNEL_NAMES
tn_cfg_default.h, 166

tn_oldsymbols.h
MAKE_ALIG, 131
TN_EVENT_ATTR_CLR, 132
TN_EVENT_ATTR_MULTI, 131
TN_EVENT_ATTR_SINGLE, 131
tn_event_clear, 133
tn_event_create, 132
tn_event_delete, 132
tn_event_iclear, 134
tn_event_iset, 133
tn_event_iwait, 133

tn_event_set, 133
tn_event_wait, 132
tn_event_wait_polling, 132

tn_p24_soft_isr
tn_arch_pic24.h, 85

TN_P24_SYS_IPL
tn_cfg_default.h, 168

tn_p32_int_nest_count
tn_arch_pic32.h, 90

tn_p32_int_sp
tn_arch_pic32.h, 90

tn_p32_soft_isr
tn_arch_pic32.h, 89

tn_p32_srs_isr
tn_arch_pic32.h, 89

tn_p32_user_sp
tn_arch_pic32.h, 90

TN_PRIORITIES_CNT
tn_cfg_default.h, 165

TN_PRIORITIES_MAX_CNT
tn_arch_example.h, 81

TN_PROFILER
tn_cfg_default.h, 167

TN_PROFILER_WAIT_TIME
tn_cfg_default.h, 167

tn_queue_create
tn_dqueue.h, 105

tn_queue_delete
tn_dqueue.h, 106

tn_queue_eventgrp_connect
tn_dqueue.h, 110

tn_queue_eventgrp_disconnect
tn_dqueue.h, 111

tn_queue_free_items_cnt_get
tn_dqueue.h, 110

tn_queue_ireceive_polling
tn_dqueue.h, 109

tn_queue_isend_polling
tn_dqueue.h, 108

tn_queue_receive
tn_dqueue.h, 108

tn_queue_receive_polling
tn_dqueue.h, 109

tn_queue_send
tn_dqueue.h, 106

tn_queue_send_polling
tn_dqueue.h, 108

tn_queue_used_items_cnt_get
tn_dqueue.h, 110

TN_RC_DELETED
tn_common.h, 103

TN_RC_FORCED
tn_common.h, 103

TN_RC_ILLEGAL_USE
tn_common.h, 103

TN_RC_INTERNAL
tn_common.h, 103

TN_RC_INVALID_OBJ

Generated by Doxygen

174 INDEX

tn_common.h, 103
TN_RC_OK

tn_common.h, 102
TN_RC_OVERFLOW

tn_common.h, 102
TN_RC_TIMEOUT

tn_common.h, 102
TN_RC_WCONTEXT

tn_common.h, 102
TN_RC_WPARAM

tn_common.h, 103
TN_RC_WSTATE

tn_common.h, 103
TN_RCode

tn_common.h, 102
tn_sched_dis_save

tn_sys.h, 145
tn_sched_restore

tn_sys.h, 145
TN_Sem, 69

id_sem, 70
tn_sem.h

tn_sem_create, 135
tn_sem_delete, 135
tn_sem_isignal, 136
tn_sem_iwait_polling, 137
tn_sem_signal, 135
tn_sem_wait, 136
tn_sem_wait_polling, 136

tn_sem_create
tn_sem.h, 135

tn_sem_delete
tn_sem.h, 135

tn_sem_isignal
tn_sem.h, 136

tn_sem_iwait_polling
tn_sem.h, 137

tn_sem_signal
tn_sem.h, 135

tn_sem_wait
tn_sem.h, 136

tn_sem_wait_polling
tn_sem.h, 136

TN_STACK_ARR_DEF
tn_sys.h, 138

TN_STACK_OVERFLOW_CHECK
tn_cfg_default.h, 167

TN_STATE_FLAG__DEADLOCK
tn_sys.h, 141

TN_STATE_FLAG__SYS_RUNNING
tn_sys.h, 141

TN_StateFlag
tn_sys.h, 141

tn_sys.h
_TN_BUILD_CFG_ARCH_STRUCT_FILL, 139
_TN_BUILD_CFG_STRUCT_FILL, 139
tn_callback_deadlock_set, 143
tn_callback_dyn_tick_set, 146

tn_callback_stack_overflow_set, 143
TN_CBDeadlock, 141
TN_CBIdle, 140
TN_CBStackOverflow, 140
TN_CBUserTaskCreate, 139
TN_Context, 141
TN_CONTEXT_ISR, 142
TN_CONTEXT_NONE, 142
TN_CONTEXT_TASK, 142
tn_cur_task_body_get, 145
tn_cur_task_get, 145
tn_is_isr_context, 144
tn_is_task_context, 144
tn_sched_dis_save, 145
tn_sched_restore, 145
TN_STACK_ARR_DEF, 138
TN_STATE_FLAG__DEADLOCK, 141
TN_STATE_FLAG__SYS_RUNNING, 141
TN_StateFlag, 141
tn_sys_context_get, 144
tn_sys_start, 142
tn_sys_state_flags_get, 144
tn_sys_time_get, 143
tn_sys_tslice_set, 143
tn_tick_int_processing, 142

tn_sys_context_get
tn_sys.h, 144

tn_sys_start
tn_sys.h, 142

tn_sys_state_flags_get
tn_sys.h, 144

tn_sys_time_get
tn_sys.h, 143

tn_sys_tslice_set
tn_sys.h, 143

TN_Task, 70
deadlock_list, 72
id_task, 72
priority_already_updated, 73
stack_high_addr, 72
stack_low_addr, 72
subsys_wait, 73

tn_task_activate
tn_tasks.h, 153

tn_task_change_priority
tn_tasks.h, 157

tn_task_create
tn_tasks.h, 150

TN_TASK_CREATE_OPT_START
tn_tasks.h, 150

tn_task_delete
tn_tasks.h, 155

tn_task_exit
tn_tasks.h, 155

TN_TASK_EXIT_OPT_DELETE
tn_tasks.h, 150

tn_task_iactivate
tn_tasks.h, 154

Generated by Doxygen

INDEX 175

tn_task_irelease_wait
tn_tasks.h, 154

tn_task_iwakeup
tn_tasks.h, 153

tn_task_profiler_timing_get
tn_tasks.h, 156

tn_task_release_wait
tn_tasks.h, 154

tn_task_resume
tn_tasks.h, 152

tn_task_sleep
tn_tasks.h, 152

TN_TASK_STATE_DORMANT
tn_tasks.h, 149

tn_task_state_get
tn_tasks.h, 156

TN_TASK_STATE_NONE
tn_tasks.h, 148

TN_TASK_STATE_RUNNABLE
tn_tasks.h, 148

TN_TASK_STATE_SUSPEND
tn_tasks.h, 148

TN_TASK_STATE_WAIT
tn_tasks.h, 148

TN_TASK_STATE_WAITSUSP
tn_tasks.h, 149

tn_task_suspend
tn_tasks.h, 151

tn_task_terminate
tn_tasks.h, 155

tn_task_wakeup
tn_tasks.h, 153

TN_TaskCreateOpt
tn_tasks.h, 150

TN_TaskExitOpt
tn_tasks.h, 150

tn_tasks.h
_TN_TASK_CREATE_OPT_IDLE, 150
tn_task_activate, 153
tn_task_change_priority, 157
tn_task_create, 150
TN_TASK_CREATE_OPT_START, 150
tn_task_delete, 155
tn_task_exit, 155
TN_TASK_EXIT_OPT_DELETE, 150
tn_task_iactivate, 154
tn_task_irelease_wait, 154
tn_task_iwakeup, 153
tn_task_profiler_timing_get, 156
tn_task_release_wait, 154
tn_task_resume, 152
tn_task_sleep, 152
TN_TASK_STATE_DORMANT, 149
tn_task_state_get, 156
TN_TASK_STATE_NONE, 148
TN_TASK_STATE_RUNNABLE, 148
TN_TASK_STATE_SUSPEND, 148
TN_TASK_STATE_WAIT, 148

TN_TASK_STATE_WAITSUSP, 149
tn_task_suspend, 151
tn_task_terminate, 155
tn_task_wakeup, 153
TN_TaskCreateOpt, 150
TN_TaskExitOpt, 150
TN_TaskState, 148
TN_WAIT_REASON_DQUE_WRECEIVE, 149
TN_WAIT_REASON_DQUE_WSEND, 149
TN_WAIT_REASON_EVENT, 149
TN_WAIT_REASON_MUTEX_C, 149
TN_WAIT_REASON_MUTEX_I, 149
TN_WAIT_REASON_NONE, 149
TN_WAIT_REASON_SEM, 149
TN_WAIT_REASON_SLEEP, 149
TN_WAIT_REASON_WFIXMEM, 149
TN_WAIT_REASONS_CNT, 149
TN_WaitReason, 149

TN_TaskState
tn_tasks.h, 148

TN_TaskTiming, 73
got_running_cnt, 74
max_consecutive_wait_time, 75
total_run_time, 74
total_wait_time, 74

tn_tick_int_processing
tn_sys.h, 142

TN_TICK_LISTS_CNT
tn_cfg_default.h, 166

TN_TickCnt
tn_common.h, 100

TN_Timer, 75
id_timer, 76
start_tick_cnt, 76
timeout, 76
timeout_cur, 77

tn_timer.h
TN_CBTickCntGet, 160
TN_CBTickSchedule, 159
tn_timer_cancel, 161
tn_timer_create, 160
tn_timer_delete, 160
tn_timer_is_active, 162
tn_timer_set_func, 162
tn_timer_start, 161
tn_timer_time_left, 162
TN_TimerFunc, 159

tn_timer_cancel
tn_timer.h, 161

tn_timer_create
tn_timer.h, 160

tn_timer_delete
tn_timer.h, 160

tn_timer_is_active
tn_timer.h, 162

tn_timer_set_func
tn_timer.h, 162

tn_timer_start

Generated by Doxygen

176 INDEX

tn_timer.h, 161
tn_timer_time_left

tn_timer.h, 162
TN_TimerFunc

tn_timer.h, 159
TN_UIntPtr

tn_arch_example.h, 85
TN_UWord

tn_arch_example.h, 85
TN_WAIT_REASON_DQUE_WRECEIVE

tn_tasks.h, 149
TN_WAIT_REASON_DQUE_WSEND

tn_tasks.h, 149
TN_WAIT_REASON_EVENT

tn_tasks.h, 149
TN_WAIT_REASON_MUTEX_C

tn_tasks.h, 149
TN_WAIT_REASON_MUTEX_I

tn_tasks.h, 149
TN_WAIT_REASON_NONE

tn_tasks.h, 149
TN_WAIT_REASON_SEM

tn_tasks.h, 149
TN_WAIT_REASON_SLEEP

tn_tasks.h, 149
TN_WAIT_REASON_WFIXMEM

tn_tasks.h, 149
TN_WAIT_REASONS_CNT

tn_tasks.h, 149
TN_WaitReason

tn_tasks.h, 149
total_run_time

TN_TaskTiming, 74
total_wait_time

TN_TaskTiming, 74

you_should_add_file___tn_app_check_c___to_the_project
tn_app_check.c, 163

Generated by Doxygen

	1 TNeo overview
	2 Foreword
	3 Features
	3.1 Feature list

	4 Quick guide
	4.1 Using TNeo in your application
	4.2 Time ticks
	4.3 Starting the kernel
	4.3.0.1 Quick guide on startup process
	4.3.0.2 Basic example for PIC32

	4.4 Round-robin scheduling

	5 Time ticks
	5.1 Static tick
	5.2 Dynamic tick

	6 Interrupts
	6.1 Interrupt stack
	6.2 Interrupt types

	7 Building TNeo
	7.1 Configuration file
	7.2 Makefile or library projects
	7.2.1 Makefile
	7.2.2 Library project

	7.3 Building manually

	8 Architecture-specific details
	8.1 PIC32 port details
	8.1.1 Context switch
	8.1.2 Interrupts
	8.1.3 Building

	8.2 PIC24/dsPIC port details
	8.2.1 Context switch
	8.2.2 Interrupts
	8.2.3 Atomic access to the structure bit field
	8.2.4 Building

	8.3 Cortex-M0/M0+/M3/M4/M4F port details
	8.3.1 Context switch
	8.3.2 Interrupts
	8.3.3 Building

	9 Why reimplement TNKernel
	9.1 Essential problems of TNKernel
	9.2 Examples of poor implementation
	9.2.1 One entry point, one exit point
	9.2.2 Don't repeat yourself
	9.2.3 Macros that return from function
	9.2.4 Code for doubly-linked lists

	9.3 Bugs of TNKernel 2.7

	10 Differences from TNKernel API
	10.1 Incompatible API changes
	10.1.1 System startup
	10.1.2 Task creation API
	10.1.3 Task wakeup count, activate count, suspend count
	10.1.4 Fixed memory pool: non-aligned address or block size
	10.1.5 Task service return values cleaned
	10.1.6 Force task releasing from wait
	10.1.7 Return code of tn_task_sleep()
	10.1.8 Events API is changed almost completely
	10.1.9 Zero timeout given to system functions

	10.2 New features
	10.3 Compatible API changes
	10.3.1 Macro MAKE_ALIG()
	10.3.2 Convenience macros for stack arrays definition
	10.3.3 Convenience macros for fixed memory block pool buffers definition
	10.3.4 Things renamed
	10.3.5 We should wait for semaphore, not acquire it

	10.4 Changes that do not affect API directly
	10.4.1 No timer task

	11 Unit tests
	11.1 Tested CPUs
	11.2 How tests are implemented
	11.3 Get unit-tests

	12 Plans
	13 Contribution
	13.1 Contribution
	13.2 Coding standard

	14 Changelog
	14.1 Current development version (BETA)
	14.2 v1.09
	14.3 v1.08
	14.4 v1.07
	14.5 v1.06
	14.6 v1.04
	14.7 v1.03
	14.8 v1.02
	14.9 v1.01
	14.10 v1.0

	15 Thanks
	16 License
	17 Legend
	18 Data Structure Index
	18.1 Data Structures

	19 File Index
	19.1 File List

	20 Data Structure Documentation
	20.1 _TN_BuildCfg Struct Reference
	20.1.1 Detailed Description

	20.2 _TN_TaskProfiler Struct Reference
	20.2.1 Detailed Description
	20.2.2 Field Documentation
	20.2.2.1 last_wait_reason
	20.2.2.2 timing

	20.3 TN_DQueue Struct Reference
	20.3.1 Detailed Description
	20.3.2 Field Documentation
	20.3.2.1 id_dque

	20.4 TN_DQueueTaskWait Struct Reference
	20.4.1 Detailed Description

	20.5 TN_EGrpLink Struct Reference
	20.5.1 Detailed Description

	20.6 TN_EGrpTaskWait Struct Reference
	20.6.1 Detailed Description

	20.7 TN_EventGrp Struct Reference
	20.7.1 Detailed Description
	20.7.2 Field Documentation
	20.7.2.1 id_event

	20.8 TN_FMem Struct Reference
	20.8.1 Detailed Description
	20.8.2 Field Documentation
	20.8.2.1 id_fmp
	20.8.2.2 block_size
	20.8.2.3 free_list

	20.9 TN_FMemTaskWait Struct Reference
	20.9.1 Detailed Description

	20.10 TN_ListItem Struct Reference
	20.10.1 Detailed Description

	20.11 TN_Mutex Struct Reference
	20.11.1 Detailed Description
	20.11.2 Field Documentation
	20.11.2.1 id_mutex

	20.12 TN_Sem Struct Reference
	20.12.1 Detailed Description
	20.12.2 Field Documentation
	20.12.2.1 id_sem

	20.13 TN_Task Struct Reference
	20.13.1 Detailed Description
	20.13.2 Field Documentation
	20.13.2.1 id_task
	20.13.2.2 deadlock_list
	20.13.2.3 stack_low_addr
	20.13.2.4 stack_high_addr
	20.13.2.5 subsys_wait
	20.13.2.6 priority_already_updated

	20.14 TN_TaskTiming Struct Reference
	20.14.1 Detailed Description
	20.14.2 Field Documentation
	20.14.2.1 total_run_time
	20.14.2.2 got_running_cnt
	20.14.2.3 total_wait_time
	20.14.2.4 max_consecutive_wait_time

	20.15 TN_Timer Struct Reference
	20.15.1 Detailed Description
	20.15.2 Field Documentation
	20.15.2.1 id_timer
	20.15.2.2 start_tick_cnt
	20.15.2.3 timeout
	20.15.2.4 timeout_cur

	21 File Documentation
	21.1 arch/cortex_m/tn_arch_cortex_m.h File Reference
	21.1.1 Detailed Description

	21.2 arch/example/tn_arch_example.h File Reference
	21.2.1 Detailed Description
	21.2.2 Macro Definition Documentation
	21.2.2.1 _TN_FFS
	21.2.2.2 _TN_FATAL_ERRORF
	21.2.2.3 TN_ARCH_STK_ATTR_BEFORE
	21.2.2.4 TN_ARCH_STK_ATTR_AFTER
	21.2.2.5 TN_PRIORITIES_MAX_CNT
	21.2.2.6 TN_INTSAVE_DATA
	21.2.2.7 TN_INTSAVE_DATA_INT
	21.2.2.8 TN_INT_DIS_SAVE
	21.2.2.9 TN_INT_RESTORE
	21.2.2.10 TN_INT_IDIS_SAVE
	21.2.2.11 TN_INT_IRESTORE
	21.2.2.12 _TN_SIZE_BYTES_TO_UWORDS
	21.2.2.13 _TN_INLINE
	21.2.2.14 _TN_VOLATILE_WORKAROUND

	21.2.3 Typedef Documentation
	21.2.3.1 TN_UWord
	21.2.3.2 TN_UIntPtr

	21.3 arch/pic24_dspic/tn_arch_pic24.h File Reference
	21.3.1 Detailed Description
	21.3.2 Macro Definition Documentation
	21.3.2.1 tn_p24_soft_isr

	21.4 arch/pic24_dspic/tn_arch_pic24_bfa.h File Reference
	21.4.1 Detailed Description
	21.4.2 Macro Definition Documentation
	21.4.2.1 TN_BFA
	21.4.2.2 TN_BFAR

	21.5 arch/pic32/tn_arch_pic32.h File Reference
	21.5.1 Detailed Description
	21.5.2 Macro Definition Documentation
	21.5.2.1 tn_p32_soft_isr
	21.5.2.2 tn_p32_srs_isr

	21.5.3 Variable Documentation
	21.5.3.1 tn_p32_int_nest_count
	21.5.3.2 tn_p32_user_sp
	21.5.3.3 tn_p32_int_sp

	21.6 arch/pic32/tn_arch_pic32_bfa.h File Reference
	21.6.1 Detailed Description
	21.6.2 Macro Definition Documentation
	21.6.2.1 TN_BFA
	21.6.2.2 TN_BFAR

	21.7 arch/tn_arch.h File Reference
	21.7.1 Detailed Description
	21.7.2 Function Documentation
	21.7.2.1 tn_arch_int_dis()
	21.7.2.2 tn_arch_int_en()
	21.7.2.3 tn_arch_sr_save_int_dis()
	21.7.2.4 tn_arch_sr_restore()
	21.7.2.5 tn_arch_sched_dis_save()
	21.7.2.6 tn_arch_sched_restore()
	21.7.2.7 _tn_arch_stack_init()
	21.7.2.8 _tn_arch_inside_isr()
	21.7.2.9 _tn_arch_is_int_disabled()
	21.7.2.10 _tn_arch_context_switch_pend()
	21.7.2.11 _tn_arch_context_switch_now_nosave()
	21.7.2.12 _tn_arch_sys_start()

	21.8 core/tn_cfg_dispatch.h File Reference
	21.8.1 Detailed Description
	21.8.2 Macro Definition Documentation
	21.8.2.1 TN_API_MAKE_ALIG_ARG__TYPE
	21.8.2.2 TN_API_MAKE_ALIG_ARG__SIZE

	21.9 core/tn_common.h File Reference
	21.9.1 Detailed Description
	21.9.2 Macro Definition Documentation
	21.9.2.1 TN_MAKE_ALIG_SIZE
	21.9.2.2 _TN_UNUSED

	21.9.3 Typedef Documentation
	21.9.3.1 TN_TickCnt

	21.9.4 Enumeration Type Documentation
	21.9.4.1 TN_ObjId
	21.9.4.2 TN_RCode

	21.10 core/tn_common_macros.h File Reference
	21.10.1 Detailed Description
	21.10.2 Macro Definition Documentation
	21.10.2.1 _TN_STRINGIFY_LITERAL
	21.10.2.2 _TN_STRINGIFY_MACRO

	21.11 core/tn_dqueue.h File Reference
	21.11.1 Detailed Description
	21.11.2 Function Documentation
	21.11.2.1 tn_queue_create()
	21.11.2.2 tn_queue_delete()
	21.11.2.3 tn_queue_send()
	21.11.2.4 tn_queue_send_polling()
	21.11.2.5 tn_queue_isend_polling()
	21.11.2.6 tn_queue_receive()
	21.11.2.7 tn_queue_receive_polling()
	21.11.2.8 tn_queue_ireceive_polling()
	21.11.2.9 tn_queue_free_items_cnt_get()
	21.11.2.10 tn_queue_used_items_cnt_get()
	21.11.2.11 tn_queue_eventgrp_connect()
	21.11.2.12 tn_queue_eventgrp_disconnect()

	21.12 core/tn_eventgrp.h File Reference
	21.12.1 Detailed Description
	21.12.2 Connecting an event group to other system objects
	21.12.3 Enumeration Type Documentation
	21.12.3.1 TN_EGrpWaitMode
	21.12.3.2 TN_EGrpOp
	21.12.3.3 TN_EGrpAttr

	21.12.4 Function Documentation
	21.12.4.1 tn_eventgrp_create_wattr()
	21.12.4.2 tn_eventgrp_create()
	21.12.4.3 tn_eventgrp_delete()
	21.12.4.4 tn_eventgrp_wait()
	21.12.4.5 tn_eventgrp_wait_polling()
	21.12.4.6 tn_eventgrp_iwait_polling()
	21.12.4.7 tn_eventgrp_modify()
	21.12.4.8 tn_eventgrp_imodify()

	21.13 core/tn_fmem.h File Reference
	21.13.1 Detailed Description
	21.13.2 Macro Definition Documentation
	21.13.2.1 TN_FMEM_BUF_DEF

	21.13.3 Function Documentation
	21.13.3.1 tn_fmem_create()
	21.13.3.2 tn_fmem_delete()
	21.13.3.3 tn_fmem_get()
	21.13.3.4 tn_fmem_get_polling()
	21.13.3.5 tn_fmem_iget_polling()
	21.13.3.6 tn_fmem_release()
	21.13.3.7 tn_fmem_irelease()
	21.13.3.8 tn_fmem_free_blocks_cnt_get()
	21.13.3.9 tn_fmem_used_blocks_cnt_get()

	21.14 core/tn_list.h File Reference
	21.14.1 Detailed Description

	21.15 core/tn_mutex.h File Reference
	21.15.1 Detailed Description
	21.15.2 Enumeration Type Documentation
	21.15.2.1 TN_MutexProtocol

	21.15.3 Function Documentation
	21.15.3.1 tn_mutex_create()
	21.15.3.2 tn_mutex_delete()
	21.15.3.3 tn_mutex_lock()
	21.15.3.4 tn_mutex_lock_polling()
	21.15.3.5 tn_mutex_unlock()

	21.16 core/tn_oldsymbols.h File Reference
	21.16.1 Detailed Description
	21.16.2 Macro Definition Documentation
	21.16.2.1 MAKE_ALIG
	21.16.2.2 TN_EVENT_ATTR_SINGLE
	21.16.2.3 TN_EVENT_ATTR_MULTI
	21.16.2.4 TN_EVENT_ATTR_CLR
	21.16.2.5 tn_event_create
	21.16.2.6 tn_event_delete
	21.16.2.7 tn_event_wait
	21.16.2.8 tn_event_wait_polling
	21.16.2.9 tn_event_iwait
	21.16.2.10 tn_event_set
	21.16.2.11 tn_event_iset
	21.16.2.12 tn_event_clear
	21.16.2.13 tn_event_iclear

	21.17 core/tn_sem.h File Reference
	21.17.1 Detailed Description
	21.17.2 Function Documentation
	21.17.2.1 tn_sem_create()
	21.17.2.2 tn_sem_delete()
	21.17.2.3 tn_sem_signal()
	21.17.2.4 tn_sem_isignal()
	21.17.2.5 tn_sem_wait()
	21.17.2.6 tn_sem_wait_polling()
	21.17.2.7 tn_sem_iwait_polling()

	21.18 core/tn_sys.h File Reference
	21.18.1 Detailed Description
	21.18.2 Macro Definition Documentation
	21.18.2.1 TN_STACK_ARR_DEF
	21.18.2.2 _TN_BUILD_CFG_ARCH_STRUCT_FILL
	21.18.2.3 _TN_BUILD_CFG_STRUCT_FILL

	21.18.3 Typedef Documentation
	21.18.3.1 TN_CBUserTaskCreate
	21.18.3.2 TN_CBIdle
	21.18.3.3 TN_CBStackOverflow
	21.18.3.4 TN_CBDeadlock

	21.18.4 Enumeration Type Documentation
	21.18.4.1 TN_StateFlag
	21.18.4.2 TN_Context

	21.18.5 Function Documentation
	21.18.5.1 tn_sys_start()
	21.18.5.2 tn_tick_int_processing()
	21.18.5.3 tn_sys_tslice_set()
	21.18.5.4 tn_sys_time_get()
	21.18.5.5 tn_callback_deadlock_set()
	21.18.5.6 tn_callback_stack_overflow_set()
	21.18.5.7 tn_sys_state_flags_get()
	21.18.5.8 tn_sys_context_get()
	21.18.5.9 tn_is_task_context()
	21.18.5.10 tn_is_isr_context()
	21.18.5.11 tn_cur_task_get()
	21.18.5.12 tn_cur_task_body_get()
	21.18.5.13 tn_sched_dis_save()
	21.18.5.14 tn_sched_restore()
	21.18.5.15 tn_callback_dyn_tick_set()

	21.19 core/tn_tasks.h File Reference
	21.19.1 Detailed Description
	21.19.2 Task
	21.19.3 Task states
	21.19.4 Creating/starting tasks
	21.19.5 Stopping/deleting tasks
	21.19.6 Scheduling rules
	21.19.7 Idle task
	21.19.8 Enumeration Type Documentation
	21.19.8.1 TN_TaskState
	21.19.8.2 TN_WaitReason
	21.19.8.3 TN_TaskCreateOpt
	21.19.8.4 TN_TaskExitOpt

	21.19.9 Function Documentation
	21.19.9.1 tn_task_create()
	21.19.9.2 tn_task_suspend()
	21.19.9.3 tn_task_resume()
	21.19.9.4 tn_task_sleep()
	21.19.9.5 tn_task_wakeup()
	21.19.9.6 tn_task_iwakeup()
	21.19.9.7 tn_task_activate()
	21.19.9.8 tn_task_iactivate()
	21.19.9.9 tn_task_release_wait()
	21.19.9.10 tn_task_irelease_wait()
	21.19.9.11 tn_task_exit()
	21.19.9.12 tn_task_terminate()
	21.19.9.13 tn_task_delete()
	21.19.9.14 tn_task_state_get()
	21.19.9.15 tn_task_profiler_timing_get()
	21.19.9.16 tn_task_change_priority()

	21.20 core/tn_timer.h File Reference
	21.20.1 Detailed Description
	21.20.2 Implementation of static timers
	21.20.3 Typedef Documentation
	21.20.3.1 TN_TimerFunc
	21.20.3.2 TN_CBTickSchedule
	21.20.3.3 TN_CBTickCntGet

	21.20.4 Function Documentation
	21.20.4.1 tn_timer_create()
	21.20.4.2 tn_timer_delete()
	21.20.4.3 tn_timer_start()
	21.20.4.4 tn_timer_cancel()
	21.20.4.5 tn_timer_set_func()
	21.20.4.6 tn_timer_is_active()
	21.20.4.7 tn_timer_time_left()

	21.21 tn.h File Reference
	21.21.1 Detailed Description

	21.22 tn_app_check.c File Reference
	21.22.1 Detailed Description
	21.22.2 Function Documentation
	21.22.2.1 you_should_add_file___tn_app_check_c___to_the_project()

	21.23 tn_cfg_default.h File Reference
	21.23.1 Detailed Description
	21.23.2 Macro Definition Documentation
	21.23.2.1 TN_CHECK_BUILD_CFG
	21.23.2.2 TN_PRIORITIES_CNT
	21.23.2.3 TN_CHECK_PARAM
	21.23.2.4 TN_DEBUG
	21.23.2.5 TN_OLD_TNKERNEL_NAMES
	21.23.2.6 TN_MUTEX_DEADLOCK_DETECT
	21.23.2.7 TN_TICK_LISTS_CNT
	21.23.2.8 TN_API_MAKE_ALIG_ARG
	21.23.2.9 TN_PROFILER
	21.23.2.10 TN_PROFILER_WAIT_TIME
	21.23.2.11 TN_INIT_INTERRUPT_STACK_SPACE
	21.23.2.12 TN_STACK_OVERFLOW_CHECK
	21.23.2.13 TN_OLD_EVENT_API
	21.23.2.14 TN_MAX_INLINE
	21.23.2.15 TN_P24_SYS_IPL

	Index

