
TNeoKernel
v1.03

Generated by Doxygen 1.8.8

Mon Oct 20 2014 18:23:46

Contents

1 TNeoKernel overview 1

2 Foreword 3

3 Quick guide 5

3.1 Time ticks . 5

3.2 Starting the kernel . 5

3.3 Round-robin scheduling . 10

4 Interrupts 11

4.1 Interrupt stack . 11

5 Building the project 13

5.1 Configuration file . 13

5.2 PIC32 port: MPLABX project . 13

6 PIC32 details 15

6.1 Context switch . 15

6.2 Interrupts . 15

7 Why reimplement TNKernel 17

7.1 Essential problems of TNKernel . 17

7.2 Examples of poor implementation . 17

7.2.1 One entry point, one exit point . 17

7.2.2 Don’t repeat yourself . 19

7.2.3 Macros that return from function . 19

7.2.4 Code for doubly-linked lists . 20

7.3 Bugs of TNKernel 2.7 . 20

8 Differences from TNKernel API 23

8.1 Incompatible API changes . 23

8.1.1 System startup . 23

8.1.2 Task creation API . 23

8.1.3 Task wakeup count, activate count, suspend count . 23

iv CONTENTS

8.1.4 Fixed memory pool: non-aligned address or block size 24

8.1.5 Task service return values cleaned . 24

8.1.6 Force task releasing from wait . 25

8.1.7 Return code of tn_task_sleep() . 25

8.1.8 Events API is changed almost completely . 25

8.1.9 Zero timeout given to system functions . 25

8.2 New features . 25

8.2.1 Timers . 25

8.2.2 Recursive mutexes . 26

8.2.3 Mutex deadlock detection . 26

8.2.4 New system services added . 26

8.3 Compatible API changes . 26

8.3.1 Macro MAKE_ALIG() . 26

8.3.2 Convenience macros for stack arrays definition . 27

8.3.3 Convenience macros for fixed memory block pool buffers definition 27

8.3.4 Things renamed . 27

8.3.5 We should wait for semaphore, not acquire it . 27

8.4 Changes that do not affect API directly . 28

8.4.1 No timer task . 28

9 Unit tests 29

9.1 How tests are implemented . 29

9.2 Get unit-tests . 31

10 Plans 33

10.1 Event connecting . 33

11 Changelog 35

11.1 v1.03 . 35

11.2 v1.02 . 35

11.3 v1.01 . 35

11.4 v1.0 . 36

12 Thanks 37

13 Legend 39

14 Data Structure Index 41

14.1 Data Structures . 41

15 File Index 43

15.1 File List . 43

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

CONTENTS v

16 Data Structure Documentation 45

16.1 TN_DQueue Struct Reference . 45

16.1.1 Detailed Description . 45

16.2 TN_DQueueTaskWait Struct Reference . 46

16.2.1 Detailed Description . 46

16.3 TN_EGrpLink Struct Reference . 46

16.3.1 Detailed Description . 46

16.4 TN_EGrpTaskWait Struct Reference . 46

16.4.1 Detailed Description . 46

16.5 TN_EventGrp Struct Reference . 47

16.5.1 Detailed Description . 47

16.6 TN_FMem Struct Reference . 47

16.6.1 Detailed Description . 47

16.6.2 Field Documentation . 48

16.6.2.1 block_size . 48

16.6.2.2 start_addr . 48

16.7 TN_FMemTaskWait Struct Reference . 48

16.7.1 Detailed Description . 48

16.8 TN_Mutex Struct Reference . 48

16.8.1 Detailed Description . 48

16.9 TN_Sem Struct Reference . 49

16.9.1 Detailed Description . 49

16.10TN_Task Struct Reference . 49

16.10.1 Detailed Description . 49

16.10.2 Field Documentation . 51

16.10.2.1 stack_top . 51

16.10.2.2 deadlock_list . 51

16.10.2.3 subsys_wait . 51

16.10.2.4 priority_already_updated . 51

16.10.2.5 waited . 51

16.11TN_Timer Struct Reference . 51

16.11.1 Detailed Description . 52

17 File Documentation 53

17.1 arch/example/tn_arch_example.h File Reference . 53

17.1.1 Detailed Description . 53

17.1.2 Macro Definition Documentation . 54

17.1.2.1 _TN_FFS . 54

17.1.2.2 _TN_FATAL_ERROR . 54

17.1.2.3 TN_ARCH_STK_ATTR_BEFORE . 54

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

vi CONTENTS

17.1.2.4 TN_ARCH_STK_ATTR_AFTER . 54

17.1.2.5 TN_PRIORITIES_MAX_CNT . 55

17.1.2.6 TN_INTSAVE_DATA . 55

17.1.2.7 TN_INTSAVE_DATA_INT . 55

17.1.2.8 TN_INT_DIS_SAVE . 55

17.1.2.9 TN_INT_RESTORE . 56

17.1.2.10 TN_INT_IDIS_SAVE . 56

17.1.2.11 TN_INT_IRESTORE . 56

17.1.3 Typedef Documentation . 56

17.1.3.1 TN_UWord . 56

17.2 arch/pic32/tn_arch_pic32.h File Reference . 56

17.2.1 Detailed Description . 56

17.2.2 Macro Definition Documentation . 57

17.2.2.1 tn_soft_isr . 57

17.2.2.2 tn_srs_isr . 57

17.3 arch/tn_arch.h File Reference . 57

17.3.1 Detailed Description . 57

17.3.2 Function Documentation . 58

17.3.2.1 tn_arch_sr_save_int_dis . 58

17.3.2.2 tn_arch_sr_restore . 58

17.3.2.3 _tn_arch_stack_top_get . 58

17.3.2.4 _tn_arch_stack_init . 59

17.3.2.5 _tn_arch_context_switch_pend . 59

17.3.2.6 _tn_arch_context_switch_now_nosave . 60

17.4 core/tn_common.h File Reference . 60

17.4.1 Detailed Description . 60

17.4.2 Macro Definition Documentation . 61

17.4.2.1 TN_API_MAKE_ALIG_ARG__TYPE . 61

17.4.2.2 TN_API_MAKE_ALIG_ARG__SIZE . 61

17.4.2.3 TN_MAKE_ALIG_SIZE . 61

17.4.2.4 TN_MAKE_ALIG . 61

17.4.3 Typedef Documentation . 62

17.4.3.1 TN_Timeout . 62

17.4.4 Enumeration Type Documentation . 62

17.4.4.1 TN_ObjId . 62

17.4.4.2 TN_RCode . 63

17.5 core/tn_dqueue.h File Reference . 64

17.5.1 Detailed Description . 64

17.5.2 Function Documentation . 65

17.5.2.1 tn_queue_create . 65

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

CONTENTS vii

17.5.2.2 tn_queue_delete . 65

17.5.2.3 tn_queue_send . 65

17.5.2.4 tn_queue_send_polling . 66

17.5.2.5 tn_queue_isend_polling . 66

17.5.2.6 tn_queue_receive . 66

17.5.2.7 tn_queue_receive_polling . 67

17.5.2.8 tn_queue_ireceive_polling . 67

17.5.2.9 tn_queue_eventgrp_connect . 67

17.5.2.10 tn_queue_eventgrp_disconnect . 67

17.6 core/tn_eventgrp.h File Reference . 68

17.6.1 Detailed Description . 68

17.6.2 Connecting an event group to other system objects . 68

17.6.3 Enumeration Type Documentation . 69

17.6.3.1 TN_EGrpWaitMode . 69

17.6.3.2 TN_EGrpOp . 70

17.6.4 Function Documentation . 70

17.6.4.1 tn_eventgrp_create . 70

17.6.4.2 tn_eventgrp_delete . 70

17.6.4.3 tn_eventgrp_wait . 71

17.6.4.4 tn_eventgrp_wait_polling . 71

17.6.4.5 tn_eventgrp_iwait_polling . 71

17.6.4.6 tn_eventgrp_modify . 71

17.6.4.7 tn_eventgrp_imodify . 72

17.7 core/tn_fmem.h File Reference . 72

17.7.1 Detailed Description . 72

17.7.2 Macro Definition Documentation . 73

17.7.2.1 TN_FMEM_BUF_DEF . 73

17.7.3 Function Documentation . 73

17.7.3.1 tn_fmem_create . 73

17.7.3.2 tn_fmem_delete . 74

17.7.3.3 tn_fmem_get . 74

17.7.3.4 tn_fmem_get_polling . 75

17.7.3.5 tn_fmem_iget_polling . 75

17.7.3.6 tn_fmem_release . 75

17.7.3.7 tn_fmem_irelease . 75

17.8 core/tn_mutex.h File Reference . 76

17.8.1 Detailed Description . 76

17.8.2 Enumeration Type Documentation . 77

17.8.2.1 TN_MutexProtocol . 77

17.8.3 Function Documentation . 77

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

viii CONTENTS

17.8.3.1 tn_mutex_create . 77

17.8.3.2 tn_mutex_delete . 77

17.8.3.3 tn_mutex_lock . 78

17.8.3.4 tn_mutex_lock_polling . 78

17.8.3.5 tn_mutex_unlock . 79

17.9 core/tn_oldsymbols.h File Reference . 79

17.9.1 Detailed Description . 79

17.9.2 Macro Definition Documentation . 82

17.9.2.1 MAKE_ALIG . 82

17.10core/tn_sem.h File Reference . 82

17.10.1 Detailed Description . 82

17.10.2 Function Documentation . 83

17.10.2.1 tn_sem_create . 83

17.10.2.2 tn_sem_delete . 83

17.10.2.3 tn_sem_signal . 84

17.10.2.4 tn_sem_isignal . 84

17.10.2.5 tn_sem_wait . 84

17.10.2.6 tn_sem_wait_polling . 85

17.10.2.7 tn_sem_iwait_polling . 85

17.11core/tn_sys.h File Reference . 85

17.11.1 Detailed Description . 85

17.11.2 Macro Definition Documentation . 86

17.11.2.1 TN_STACK_ARR_DEF . 86

17.11.3 Typedef Documentation . 87

17.11.3.1 TN_CBUserTaskCreate . 87

17.11.3.2 TN_CBIdle . 87

17.11.3.3 TN_CBDeadlock . 87

17.11.4 Enumeration Type Documentation . 88

17.11.4.1 TN_StateFlag . 88

17.11.4.2 TN_Context . 88

17.11.5 Function Documentation . 88

17.11.5.1 tn_sys_start . 88

17.11.5.2 tn_tick_int_processing . 89

17.11.5.3 tn_sys_tslice_set . 89

17.11.5.4 tn_sys_time_get . 89

17.11.5.5 tn_callback_deadlock_set . 90

17.11.5.6 tn_sys_state_flags_get . 90

17.11.5.7 tn_sys_context_get . 90

17.11.5.8 tn_is_task_context . 90

17.11.5.9 tn_is_isr_context . 91

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

CONTENTS ix

17.11.5.10tn_cur_task_get . 91

17.11.5.11tn_cur_task_body_get . 91

17.12core/tn_tasks.h File Reference . 91

17.12.1 Detailed Description . 91

17.12.2 Enumeration Type Documentation . 93

17.12.2.1 TN_TaskState . 93

17.12.2.2 TN_WaitReason . 93

17.12.2.3 TN_TaskCreateOpt . 94

17.12.2.4 TN_TaskExitOpt . 94

17.12.3 Function Documentation . 94

17.12.3.1 tn_task_create . 94

17.12.3.2 tn_task_suspend . 95

17.12.3.3 tn_task_resume . 96

17.12.3.4 tn_task_sleep . 96

17.12.3.5 tn_task_wakeup . 97

17.12.3.6 tn_task_iwakeup . 97

17.12.3.7 tn_task_activate . 97

17.12.3.8 tn_task_iactivate . 98

17.12.3.9 tn_task_release_wait . 98

17.12.3.10tn_task_irelease_wait . 98

17.12.3.11tn_task_exit . 98

17.12.3.12tn_task_terminate . 99

17.12.3.13tn_task_delete . 99

17.12.3.14tn_task_state_get . 100

17.12.3.15tn_task_change_priority . 100

17.13core/tn_timer.h File Reference . 100

17.13.1 Detailed Description . 100

17.13.2 Implementation of timers . 101

17.13.3 Typedef Documentation . 102

17.13.3.1 TN_TimerFunc . 102

17.13.4 Function Documentation . 103

17.13.4.1 tn_timer_create . 103

17.13.4.2 tn_timer_delete . 103

17.13.4.3 tn_timer_start . 104

17.13.4.4 tn_timer_cancel . 104

17.13.4.5 tn_timer_set_func . 104

17.13.4.6 tn_timer_is_active . 105

17.13.4.7 tn_timer_time_left . 105

17.14tn.h File Reference . 105

17.14.1 Detailed Description . 105

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

x CONTENTS

17.15tn_cfg_default.h File Reference . 105

17.15.1 Detailed Description . 106

17.15.2 Macro Definition Documentation . 106

17.15.2.1 TN_PRIORITIES_CNT . 106

17.15.2.2 TN_CHECK_PARAM . 107

17.15.2.3 TN_DEBUG . 107

17.15.2.4 TN_OLD_TNKERNEL_NAMES . 107

17.15.2.5 TN_MUTEX_DEADLOCK_DETECT . 107

17.15.2.6 TN_TICK_LISTS_CNT . 107

17.15.2.7 TN_API_MAKE_ALIG_ARG . 108

Index 109

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 1

TNeoKernel overview

TNeoKernel is a compact and fast real-time kernel for the embedded 32/16 bits microprocessors. It performs a
preemptive priority-based scheduling and a round-robin scheduling for the tasks with identical priority.

TNeoKernel was born as a thorough review and re-implementation of TNKernel 2.7. The new kernel has well-
formed code, inherited bugs are fixed as well as new features being added, it is well documented and tested carefully
with unit-tests.

Currently it is available for PIC32 only, but will probably be ported to other architectures. Tested on PIC32MX.

API is changed somewhat, so it’s not 100% compatible with TNKernel, hence the new name: TNeoKernel.

TNeoKernel is hosted at bitbucket: http://bitbucket.org/dfrank/tneokernel

Related pages:

• Foreword

• Quick guide

• Interrupts

• Building the project

• PIC32 details

• Why reimplement TNKernel

• Differences from TNKernel API

• Unit tests

• Plans

• Changelog

• Thanks

• Legend

API reference:

• System services

• Tasks

• Mutexes

• Semaphores

• Fixed-memory blocks pool

http://tnkernel.com
http://bitbucket.org/dfrank/tneokernel

2 TNeoKernel overview

• Event groups

• Data queues

• Timers

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 2

Foreword

Foreword.

This project was initially a fork of PIC32 TNKernel port by Anders Montonen. I don’t like several design
decisions of original TNKernel, as well as many of the implementation details, but Anders wants to keep his port as
close to original TNKernel as possible. So I decided to fork it and have fun implementing what I want.

The more I get into how TNKernel works, the less I like its code. It appears as a very hastily-written project: there is
a lot of code duplication and a lot of inconsistency, all of this leads to bugs. More, TNKernel is not documented well
enough and there are no unit tests for it, so I decided to reimplement it almost completely. Refer to the page Why
reimplement TNKernel for details.

I decided not to care much about compatibility with original TNKernel API because I really don’t like several API
decisions, so, I actually had to choose new name for this project, in order to avoid confusion, hence "TNeoKernel".
Refer to the Differences from TNKernel API page for details.

Together with almost totally re-writing TNKernel, I’ve implemented detailed unit tests for it, to make sure I didn’t
break anything, and of course I’ve found several bugs in original TNKernel 2.7: refer to the section Bugs of TN←↩
Kernel 2.7. Unit tests are, or course, a "must-have" for the project like this; it’s so strange bug original TNKernel
seems untested.

Note that PIC32-dependent routines (such as context switch and so on) are originally implemented by Anders
Montonen; I examined them in detail and changed several things which I believe should be implemented differently.
Anders, great thanks for sharing your job.

Another existing PIC32 port, the one by Alex Borisov, also affected my project a bit. In fact, I used to use
Alex’s port for a long time, but it has several concepts that I don’t like, so I had to move eventually. Nevertheless,
Alex’s port has several nice ideas and solutions, so I didn’t hesitate to take what I like from his port. Alex, thank you
too.

And, of course, great thanks to the author of original TNKernel, Yuri Tiomkin. Although the implementation of TN←↩
Kernel is far from perfect in my opinion, the ideas behind the implementation are generally really nice (that’s why I
decided to reimplement it instead of starting from scratch), and it was great entry point to the real-time kernels for
me.

I would also like to thank my chiefs in the ORION company, Alexey Morozov and Alexey Gromov, for being flexible
about my time.

For the full thanks list, refer to the page Thanks.

https://github.com/andersm/TNKernel-PIC32
http://www.tnkernel.com/tn_port_pic24_dsPIC_PIC32.html
http://orionspb.ru/

4 Foreword

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 3

Quick guide

This page contains quick guide on system startup and important implementation details.

3.1 Time ticks

For the purpose of calculating timeouts, the kernel uses a time tick timer. In TNeoKernel, this time tick timer must
to be a some kind of hardware timer that produces interrupt for time ticks processing. Throughout this text, this
timer is referred to as system timer. The period of this timer is determined by user (typically 1 ms, but user is free
to set different value). In the ISR for this timer, it is only necessary to call the tn_tick_int_processing()
function:

//-- example for PIC32, hardware timer 5 interrupt:
tn_soft_isr(_TIMER_5_VECTOR)
{

INTClearFlag(INT_T5);
tn_tick_int_processing();

}

3.2 Starting the kernel

Quick guide on startup process

• You allocate arrays for idle task stack and interrupt stack, there is a convenience macro TN_STACK_A←↩
RR_DEF() for that. It is good idea to consult the TN_MIN_STACK_SIZE to determine stack sizes (see
example below).

• You provide callback function like void init_task_create(void) { ... }, in which at least
one (and typically just one) your own task should be created and activated. This task should perform appli-
cation initialization and create all the rest of tasks. See details in TN_CBUserTaskCreate().

• You provide idle callback function to be called periodically from idle task. It’s quite fine to leave it empty.

• In the main() you should:

– disable interrupts globally by calling tn_arch_int_dis();

– perform some essential CPU configuration, such as oscillator settings and similar things.

– setup system timer interrupt (from which tn_tick_int_processing() gets called)

– perform any platform-dependent required actions (say, on PIC32 you should enable core software inter-
rupt 0 with the lowest priority)

– call tn_sys_start() providing all necessary information: pointers to stacks, their sizes and your
callback functions.

6 Quick guide

• Kernel acts as follows:

– performs all necessary housekeeping;

– creates idle task;

– calls your TN_CBUserTaskCreate() callback, in which your initial task is created with TN_TAS←↩
K_CREATE_OPT_START option;

– performs first context switch (to your task with highest priority).

• At this point, system operates normally: your initial task gets executed and you can call whatever system
services you need. Typically, your initial task acts then as follows:

– Perform initialization of various on-board peripherals (displays, flash memory chips, or whatever);

– Initialize software modules used by application;

– Create all the rest of your tasks (since everything is initialized already so that they can proceed with
their job);

– Eventually, perform its primary job (the job for which task was created at all).

Basic example for PIC32

This example project can be found in the TNeoKernel repository, in the examples/basic/arch/pic32 direc-
tory.

Attention

Before trying to build examples, please read Building the project page carefully: you need to copy con-
figuration file in the tneokernel directory to build it. Each example has tn_cfg_appl.h file, and you
should either create a symbolic link to this file from tneokernel/src/tn_cfg.h or just copy this file
as tneokernel/src/tn_cfg.h.

/**
* TNeoKernel PIC32 basic example

*/

/***
* INCLUDED FILES

**/

#include <xc.h>
#include <plib.h>
#include <stdint.h>
#include "tn.h"

/***
* PIC32 HARDWARE CONFIGURATION

**/

#pragma config FNOSC = PRIPLL // Oscillator Selection
#pragma config FPLLIDIV = DIV_4 // PLL Input Divider (PIC32 Starter Kit: use divide by 2 only)
#pragma config FPLLMUL = MUL_20 // PLL Multiplier
#pragma config FPLLODIV = DIV_1 // PLL Output Divider
#pragma config FPBDIV = DIV_2 // Peripheral Clock divisor
#pragma config FWDTEN = OFF // Watchdog Timer
#pragma config WDTPS = PS1 // Watchdog Timer Postscale
#pragma config FCKSM = CSDCMD // Clock Switching & Fail Safe Clock Monitor
#pragma config OSCIOFNC = OFF // CLKO Enable
#pragma config POSCMOD = HS // Primary Oscillator
#pragma config IESO = OFF // Internal/External Switch-over
#pragma config FSOSCEN = OFF // Secondary Oscillator Enable
#pragma config CP = OFF // Code Protect
#pragma config BWP = OFF // Boot Flash Write Protect
#pragma config PWP = OFF // Program Flash Write Protect
#pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select
#pragma config DEBUG = OFF // Debugger Disabled for Starter Kit

/***

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

3.2 Starting the kernel 7

* MACROS

**/

//-- instruction that causes debugger to halt
#define PIC32_SOFTWARE_BREAK() __asm__ volatile ("sdbbp 0")

//-- system frequency
#define SYS_FREQ 80000000UL

//-- peripheral bus frequency
#define PB_FREQ 40000000UL

//-- kernel ticks (system timer) frequency
#define SYS_TMR_FREQ 1000

//-- system timer prescaler
#define SYS_TMR_PRESCALER T5_PS_1_8
#define SYS_TMR_PRESCALER_VALUE 8

//-- system timer period (auto-calculated)
#define SYS_TMR_PERIOD \

(PB_FREQ / SYS_TMR_PRESCALER_VALUE / SYS_TMR_FREQ)

//-- idle task stack size, in words
#define IDLE_TASK_STACK_SIZE (TN_MIN_STACK_SIZE + 16)

//-- interrupt stack size, in words
#define INTERRUPT_STACK_SIZE (TN_MIN_STACK_SIZE + 64)

//-- stack sizes of user tasks
#define TASK_A_STK_SIZE (TN_MIN_STACK_SIZE + 96)
#define TASK_B_STK_SIZE (TN_MIN_STACK_SIZE + 96)
#define TASK_C_STK_SIZE (TN_MIN_STACK_SIZE + 96)

//-- user task priorities
#define TASK_A_PRIORITY 7
#define TASK_B_PRIORITY 6
#define TASK_C_PRIORITY 5

/***
* DATA

**/

//-- Allocate arrays for stacks: stack for idle task
// and for interrupts are the requirement of the kernel;
// others are application-dependent.
//
// We use convenience macro TN_STACK_ARR_DEF() for that.

TN_STACK_ARR_DEF(idle_task_stack, IDLE_TASK_STACK_SIZE);
TN_STACK_ARR_DEF(interrupt_stack, INTERRUPT_STACK_SIZE);

TN_STACK_ARR_DEF(task_a_stack, TASK_A_STK_SIZE);
TN_STACK_ARR_DEF(task_b_stack, TASK_B_STK_SIZE);
TN_STACK_ARR_DEF(task_c_stack, TASK_C_STK_SIZE);

//-- task structures

struct TN_Task task_a = {};
struct TN_Task task_b = {};
struct TN_Task task_c = {};

/***
* ISRs

**/

/**
* system timer ISR

*/
tn_soft_isr(_TIMER_5_VECTOR)
{

INTClearFlag(INT_T5);
tn_tick_int_processing();

}

/***

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

8 Quick guide

* FUNCTIONS

**/

void appl_init(void);

void task_a_body(void *par)
{

//-- this is a first created application task, so it needs to perform
// all the application initialization.
appl_init();

//-- and then, let’s get to the primary job of the task
// (job for which task was created at all)
for(;;)
{

mPORTEToggleBits(BIT_0);
tn_task_sleep(500);

}
}

void task_b_body(void *par)
{

for(;;)
{

mPORTEToggleBits(BIT_1);
tn_task_sleep(1000);

}
}

void task_c_body(void *par)
{

for(;;)
{

mPORTEToggleBits(BIT_2);
tn_task_sleep(1500);

}
}

/**
* Hardware init: called from main() with interrupts disabled

*/
void hw_init(void)
{

SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE);

//turn off ADC function for all pins
AD1PCFG = 0xffffffff;

//-- enable timer5 interrupt
OpenTimer5((0

| T5_ON
| T5_IDLE_STOP
| SYS_TMR_PRESCALER
| T5_SOURCE_INT
),

(SYS_TMR_PERIOD - 1)
);

//-- set timer5 interrupt priority to 2, enable it
INTSetVectorPriority(INT_TIMER_5_VECTOR, INT_PRIORITY_LEVEL_2);
INTSetVectorSubPriority(INT_TIMER_5_VECTOR, INT_SUB_PRIORITY_LEVEL_0);
INTClearFlag(INT_T5);
INTEnable(INT_T5, INT_ENABLED);

//-- TNeoKernel PIC32 requirement:
// set up the software interrupt 0 with a priority of 1, subpriority 0
//
// NOTE: the ISR is declared in kernel-provided file
// tn_arch_pic32_int_vec1.S, which should be included in the application
// project itself, in order to dispatch vector correctly.
INTSetVectorPriority(INT_CORE_SOFTWARE_0_VECTOR, INT_PRIORITY_LEVEL_1);
INTSetVectorSubPriority(INT_CORE_SOFTWARE_0_VECTOR, INT_SUB_PRIORITY_LEVEL_0);
INTClearFlag(INT_CS0);
INTEnable(INT_CS0, INT_ENABLED);

//-- enable multi-vectored interrupt mode
INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR);

}

/**
* Application init: called from the first created application task

*/
void appl_init(void)
{

//-- configure LED port pins
mPORTESetPinsDigitalOut(BIT_0 | BIT_1 | BIT_2);
mPORTEClearBits(BIT_0 | BIT_1 | BIT_2);

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

3.2 Starting the kernel 9

//-- initialize various on-board peripherals, such as
// flash memory, displays, etc.
// (in this sample project there’s nothing to init)

//-- initialize various program modules
// (in this sample project there’s nothing to init)

//-- create all the rest application tasks
tn_task_create(

&task_b,
task_b_body,
TASK_B_PRIORITY,
task_b_stack,
TASK_B_STK_SIZE,
NULL,
(TN_TASK_CREATE_OPT_START)
);

tn_task_create(
&task_c,
task_c_body,
TASK_C_PRIORITY,
task_c_stack,
TASK_C_STK_SIZE,
NULL,
(TN_TASK_CREATE_OPT_START)
);

}

//-- idle callback that is called periodically from idle task
void idle_task_callback (void)
{
}

//-- create first application task(s)
void init_task_create(void)
{

//-- task A performs complete application initialization,
// it’s the first created application task
tn_task_create(

&task_a, //-- task structure
task_a_body, //-- task body function
TASK_A_PRIORITY, //-- task priority
task_a_stack, //-- task stack
TASK_A_STK_SIZE, //-- task stack size (in words)
NULL, //-- task function parameter
TN_TASK_CREATE_OPT_START //-- creation option
);

}

int32_t main(void)
{
#ifndef PIC32_STARTER_KIT

/*The JTAG is on by default on POR. A PIC32 Starter Kit uses the JTAG, but
for other debug tool use, like ICD 3 and Real ICE, the JTAG should be off
to free up the JTAG I/O */

DDPCONbits.JTAGEN = 0;
#endif

//-- unconditionally disable interrupts
tn_arch_int_dis();

//-- init hardware
hw_init();

//-- call to tn_sys_start() never returns
tn_sys_start(

idle_task_stack,
IDLE_TASK_STACK_SIZE,
interrupt_stack,
INTERRUPT_STACK_SIZE,
init_task_create,
idle_task_callback
);

//-- unreachable
return 1;

}

void __attribute__((naked, nomips16, noreturn)) _general_exception_handler(void)
{

PIC32_SOFTWARE_BREAK();
for (;;) ;

}

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

10 Quick guide

3.3 Round-robin scheduling

TNKernel has the ability to make round robin scheduling for tasks with identical priority. By default, round robin
scheduling is turned off for all priorities. To enable round robin scheduling for tasks on certain priority level and to
set time slices for these priority, user must call the tn_sys_tslice_set() function. The time slice value is the
same for all tasks with identical priority but may be different for each priority level. If the round robin scheduling is
enabled, every system time tick interrupt increments the currently running task time slice counter. When the time
slice interval is completed, the task is placed at the tail of the ready to run queue of its priority level (this queue
contains tasks in the RUNNABLE state) and the time slice counter is cleared. Then the task may be preempted by
tasks of higher or equal priority.

In most cases, there is no reason to enable round robin scheduling. For applications running multiple copies of the
same code, however, (GUI windows, etc), round robin scheduling is an acceptable solution.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 4

Interrupts

4.1 Interrupt stack

TNeoKernel provides a separate stack for interrupt handlers. This approach could save a lot of RAM: interrupt can
happen at any moment of time, and if there’s no separate interrupt stack, then each task should have enough stack
space for the worse case of interrupt nesting.

Assume application’s ISRs take max 64 words (64 ∗ 4 = 256 bytes on PIC32) and application has 4 tasks (plus one
idle task). Then, each of 5 tasks must have 64 words for interrupts: 64 ∗ 5 ∗ 4 = 1280 bytes of RAM just for 64
words for ISR.

With separate stack for interrupts, these 64 words should be allocated just once. Interrupt stack array should be
given to tn_sys_start(). For additional information, refer to the section Starting the kernel.

In order to make particular ISR use separate interrupt stack, this ISR should be defined by kernel-provided macro,
which is platform-dependent: see PIC32 details.

In spite of the fact that the kernel provides separate stack for interrupt, this isn’t a mandatory: you’re able to define
your ISR in a standard way, making it use stask of interrupted task and work a bit faster. There is always a tradeoff.
There are no additional constraints on ISR defined without kernel-provided macro: in either ISR, you can call the
same set of kernel services.

When you make a decision on whether particular ISR should use separate stack, consider the following:

• When ISR is defined in a standard way, and no function is called from that ISR, only necessary registers are
saved on stack. If you have such an ISR (that doesn’t call any function), and this ISR should work very fast,
consider using standard way instead of kernel-provided macro.

• When ISR is defined in a standard way, but it calls any function and doesn’t use shadow register set, compiler
saves (almost) full context on the task’s stack, because it doesn’t know which registers are used inside the
function. In this case, it usually makes more sense to use kernel-provided macro (see below).

• Kernel-provided interrupt macros switch stack pointer between interrupt stack and task stack automatically, it
takes additional time: e.g. on PIC32 it’s about 20 cycles.

• Kernel-provided interrupt macro that doesn’t use shadow register set always saves (almost) full context on
the interrupt stack, independently of whether any function is called from an ISR.

• Kernel-provided interrupt macro that uses shadow register set saves a little amount of registers on the inter-
rupt stack.

12 Interrupts

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 5

Building the project

Some notes on building the project

5.1 Configuration file

TNeoKernel is intended to be built as a library, separately from main project (although nothing prevents you from
bundling things together, if you want to).

There are various options available which affects API and behavior of the kernel. But these options are specific for
particular project, and aren’t related to the kernel itself, so we need to keep them separately.

To this end, file tn.h (the main kernel header file) includes tn_cfg.h, which isn’t included in the repository
(even more, it is added to .hgignore list actually). Instead, default configuration file tn_cfg_default.h is
provided, and when you just cloned the repository, you might want to copy it as tn_cfg.h. Or even better, if your
filesystem supports symbolic links, copy it somewhere to your main project’s directory (so that you can add it to your
VCS there), and create symlink to it named tn_cfg.h in the TNeoKernel source directory, like this:

$ cd /path/to/tneokernel/src
$ cp ./tn_cfg_default.h /path/to/main/project/lib_cfg/tn_cfg.h
$ ln -s /path/to/main/project/lib_cfg/tn_cfg.h ./tn_cfg.h

Default configuration file contains detailed comments, so you can read them and configure behavior as you like.

5.2 PIC32 port: MPLABX project

MPLABX project resides in the src/arch/pic32/tneokernel.X directory. This is a library project in terms
of MPLABX, so if you use MPLABX you can easily add it to your main project by right-clicking Libraries ->
Add Library Project Alternatively, of course you can just build it and use resulting tneokernel.←↩
X.a file in whatever way you like.

14 Building the project

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 6

PIC32 details

PIC32 port implementation details

6.1 Context switch

The context switch is implemented using the core software 0 interrupt. It should be configured to use the lowest
priority in the system:

// set up the software interrupt 0 with a priority of 1, subpriority 0
INTSetVectorPriority(INT_CORE_SOFTWARE_0_VECTOR, INT_PRIORITY_LEVEL_1);
INTSetVectorSubPriority(INT_CORE_SOFTWARE_0_VECTOR, INT_SUB_PRIORITY_LEVEL_0);
INTEnable(INT_CS0, INT_ENABLED);

The interrupt priority level used by the context switch interrupt should not be configured to use shadow register sets.

Attention

if tneokernel is built as a separate library, then the file src/arch/pic32/tn_arch_pic32_int_←↩
vec1.S must be included in the main project itself, in order to dispatch vector1 (core software interrupt
0) correctly. Do note that if we include this file in the TNeoKernel library project, it doesn’t work for vector,
unfortunately.
If you forgot to include this file, you got an error on the link step, like this:

undefined reference to ‘_you_should_add_file___tn_arch_pic32_int_vec1_S___to_the_project’

Which is much more informative than if you just get to _DefaultInterrupt when it’s time to switch
context.

6.2 Interrupts

For detailed information about interrupts in TNeoKernel, refer to the page Interrupts.

PIC32 port supports nested interrupts. The kernel provides C-language macros for calling C-language interrupt
service routines, which can use either MIPS32 or MIPS16e mode. Both software and shadow register interrupt
context saving is supported. Usage is as follows:

/* Timer 1 interrupt handler using software interrupt context saving */
tn_soft_isr(_TIMER_1_VECTOR)
{

/* here is your ISR code, including clearing of interrupt flag, and so on */
}

/* High-priority UART interrupt handler using shadow register set */
tn_srs_isr(_UART_1_VECTOR)
{

/* here is your ISR code, including clearing of interrupt flag, and so on */
}

16 PIC32 details

Alternatively, you can define your ISR in a standard way, like this:

void __ISR(_TIMER_1_VECTOR) timer_1_isr(void)
{

/* here is your ISR code, including clearing of interrupt flag, and so on */
}

Then, context is saved on the task’s stack instead of interrupt stack (and takes therefore much more RAM), but you
save about 20 cycles for each interrupt. See the page Interrupts for details.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 7

Why reimplement TNKernel

Explanation of essential TNKernel problems as well as several examples of poor implementation.

7.1 Essential problems of TNKernel

• The most essential problem is that TNKernel is a very hastily-written project. Several concepts are just poorly
thought out, others are poorly implemented: there is a lot of code duplication and inconsistency;

• It is untested: there are no unit tests for the kernel, this is not acceptable for the project like real-time kernel;

As a result of the two above, the kernel is buggy. And even more, the kernel is really hard to maintain because of
inconsistency, so when we add new features or change something, we are likely to add new bugs as well.

• It is unsupported. I’ve written to the Yuri Tiomkin about troubles with MAKE_ALIG() macro as well as about
bugs in the kernel, my messages were just ignored;

• Documentation is far from perfect and it lives separately of the project itself: latest kernel version at the
moment is 2.7 (published at 2013), but latest documentation is for 2.3 (published at 2006).

7.2 Examples of poor implementation

7.2.1 One entry point, one exit point

The most common example that happens across all TNKernel sources is code like the following:

int my_function(void)
{

tn_disable_interrupt();
//-- do something

if (error()){
//-- do something

tn_enable_interrupt();
return ERROR;

}
//-- do something

tn_enable_interrupt();
return SUCCESS;

}

If you have multiple return statements or, even more, if you have to perform some action before return (tn_←↩
enable_interrupt() in the example above), it’s great job for goto:

18 Why reimplement TNKernel

int my_function(void)
{

int rc = SUCCESS;
tn_disable_interrupt();
//-- do something

if (error()){
//-- do something
rc = ERROR;
goto out;

}
//-- do something

out:
tn_enable_interrupt();
return rc;

}

I understand there are a lot of people that don’t agree with me on this (mostly because they religiously believe that
goto is unconditionally evil), but anyway I decided to explain it. And, let’s go further:

While multiple goto-s to single label are better than multiple return statements, it becomes less useful as we get
to something more complicated. Imagine we need to perform some checks before disabling interrupts, and perform
some other checks after disabling them. Then, we have to create two labels, like that:

int my_function(void)
{

int rc = SUCCESS;

if (error1()){
rc = ERROR1;
goto out;

}

tn_disable_interrupt();

if (error2()){
rc = ERROR2;
goto out_ei;

}

if (error3()){
rc = ERROR3;
goto out_ei;

}

//-- perform job

out_ei:
tn_enable_interrupt();

out:
return rc;

}

For each error handling, we should specify the label explicitly, and it’s easy to mix labels up, especially if we add
some new case to check in the future. So, I believe this approach is a superior:

int my_function(void)
{

int rc = SUCCESS;

if (error1()){
rc = ERROR1;

} else {
tn_disable_interrupt();

if (error2()){
rc = ERROR2;

} else if (error3()){
rc = ERROR3;

} else {
//-- perform job

}

tn_enable_interrupt();
}

return rc;
}

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

7.2 Examples of poor implementation 19

Then, for each new error handling, we should just add new else if block, and there’s no need to care where to
go if error happened. Let the compiler do the branching job for you. More, this code looks more compact.

Needless to say, I already found such bug in original TNKernel 2.7 code. The function tn_sys_tslice_←↩
ticks() looks as follows:

int tn_sys_tslice_ticks(int priority,int value)
{

TN_INTSAVE_DATA

TN_CHECK_NON_INT_CONTEXT

tn_disable_interrupt();

if(priority <= 0 || priority >= TN_NUM_PRIORITY-1 ||
value < 0 || value > MAX_TIME_SLICE)

return TERR_WRONG_PARAM;

tn_tslice_ticks[priority] = value;

tn_enable_interrupt();
return TERR_NO_ERR;

}

If you look closely, you can see that if wrong params were given, TERR_WRONG_PARAM is returned, and interrupts
remain disabled. If we follow the one entry point, one exit point rule, this bug is much less likely to happen.

7.2.2 Don’t repeat yourself

Original TNKernel 2.7 code has a lot of code duplication. So many similar things are done in several places just by
copy-pasting the code.

• If we have similar functions (like, tn_queue_send(), tn_queue_send_polling() and tn_←↩
queue_isend_polling()), the implementation is just copy-pasted, there’s no effort to generalize
things.

• Mutexes have complicated algorithms for task priorities. It is implemented in inconsistent, messy manner,
which leads to bugs (refer to Bugs of TNKernel 2.7)

• Transitions between task states are done, again, in inconsistent copy-pasting manner. When we need to move
task from, say, RUNNABLE state to the WAIT state, it’s not enough to just clear one flag and set another one:
we also need to remove it from whatever run queue the task is contained, probably find next task to run, then
set reason of waiting, probably add to wait queue, set up timeout if specified, etc. In original TNKernel 2.7,
there’s no general mechanism to do this.

Meanwhile, the correct way is to create three functions for each state:

– to set the state;

– to clear the state;

– to test if the state active.

And then, when we need to move task from one state to another, we typically should just call two functions:
one for clearing current state, and one for settine a new one. It is consistent, and of course this approach is
used in TNeoKernel.

As a result of the violation of the rule Don’t repeat yourself, when we need to change something, we need to change
it in several places. Needless to say, it is very error-prone practice, and of course there are bugs in original TNKernel
because of that (refer to Bugs of TNKernel 2.7).

7.2.3 Macros that return from function

TNKernel uses architecture-depended macros like TN_CHECK_NON_INT_CONTEXT. This macro checks the cur-
rent context (task or ISR), and if it is ISR, it returns TERR_WRONG_PARAM.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

20 Why reimplement TNKernel

It isn’t obvious to the reader of the code, but things like returning from function must be as obvious as possible.

It is better to invent some function that tests current context, and return the value explicitly:

enum TN_RCode my_function(void)
enum TN_RCode rc = TN_RC_OK;

// ...

if (!tn_is_task_context()){
rc = TN_RC_WCONTEXT;
goto out;

}

// ...

out:
return rc

}

7.2.4 Code for doubly-linked lists

TNKernel uses doubly-linked lists heavily, which is very good. I must admit that I really like the way data is organized
in TNKernel. But, unfortunately, code that manages data is far from perfect, as I already mentioned.

So, let’s get to the lists. I won’t paste all the macros here, just make some overview. If we have a list, it’s very
common task to iterate through it. Typical snippet in TNKernel looks like this:

CDLL_QUEUE * curr_que;
TN_MUTEX * tmp_mutex;

curr_que = tn_curr_run_task->mutex_queue.next;
while(curr_que != &(tn_curr_run_task->mutex_queue))
{

tmp_mutex = get_mutex_by_mutex_queque(curr_que);

/* now, tmp_mutex points to the next object, so,
we can do something useful with it */

curr_que = curr_que->next;
}

This code is neither easy to read nor elegant. It’s much better to use special macro for that (actually, similar macros
are used across the whole Linux kernel code) :

TN_MUTEX * tmp_mutex;

tn_list_for_each_entry(tmp_mutex, &(tn_curr_run_task->mutex_queue), mutex_queue){
/* now, tmp_mutex points to the next object, so,

we can do something useful with it */
}

Much shorter and intuitive, isn’t it? We even don’t have to keep special curr_que.

7.3 Bugs of TNKernel 2.7

TNKernel 2.7 has several bugs, which are caught by detailed unit tests and fixed.

• We have two tasks: low-priority one task_low and high-priority one task_high. They use mutex M1
with priority inheritance.

– task_low locks M1

– task_high tries to lock mutex M1 and gets blocked -> priority of task_low elevates to the priority
of task_high

– task_high stops waiting for mutex by timeout -> priority of task_low remains elevated. The same
happens if task_high is terminated by tn_task_terminate().

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

7.3 Bugs of TNKernel 2.7 21

• We have three tasks: two low-priority tasks task_low1 and task_low2, and high-priority one task_←↩
high. They use mutex M1 with priority inheritance.

– task_low1 locks M1

– task_low2 tries to lock M1 and gets blocked

– task_high tries to lock M1 and gets blocked -> priority if task_low1 is elevated

– task_low1 unlocks M1 ->

* priority of task_low1 returns to base value

* task_low2 locks M1 because it’s the next task in the mutex queue

* now, priority of task_low2 should be elevated, but it doesn’t happen. Priority inversion is in
effect.

• tn_mutex_delete() : if mutex is not locked, TERR_ILUSE is returned. Of course, task should be able
to delete non-locked mutex;

• If task that waits for mutex is in WAIT+SUSPEND state, and mutex is deleted, TERR_NO_ERR is returned af-
ter returning from SUSPEND state, instead of TERR_DLT. The same for queue deletion, semaphore deletion,
event deletion.

• tn_sys_tslice_ticks() : if wrong params are given, TERR_WRONG_PARAM is returned and inter-
rupts remain disabled.

• tn_queue_receive() and tn_fmem_get() : if timeout is in effect, then TN_RC_TIMEOUT is
returned, but user-provided pointer is altered anyway (some garbage data is written there)

• Probably not a "bug", but an issue in the data queue: actual capacity of the buffer is less by 1 than user has
specified and allocated

• Event: if TN_EVENT_ATTR_CLR flag is set, and the task that is waiting for event is suspended, this flag
TN_EVENT_ATTR_CLR is ignored (pattern is not reset). I can’t say this bug is "fixed" because TNeoKernel
has event groups instead of events, and there is no TN_EVENT_ATTR_CLR flag.

Bugs with mutexes are the direct result of the inconsistency and copy-pasting the code, as well as lack of unit tests.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

22 Why reimplement TNKernel

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 8

Differences from TNKernel API

If you have experience of using TNKernel, you really want to read this.

8.1 Incompatible API changes

8.1.1 System startup

Original TNKernel code designed to be built together with main project only, there’s no way to build as a separate
library: at least, arrays for idle and timer task stacks are allocated statically, so size of them is defined at tnkernel
compile time.

It’s much better if we could pass these things to tnkernel at runtime, so, tn_sys_start() now takes pointers to
stack arrays and their sizes. Refer to Starting the kernel section for the details.

8.1.2 Task creation API

In original TNKernel, one should give bottom address of the task stack to tn_task_create(), like this:

#define MY_STACK_SIZE 0x100
static unsigned int my_stack[MY_STACK_SIZE];

tn_task_create(/* ... several arguments omitted ... */
&(my_stack[MY_STACK_SIZE - 1]),
/* ... several arguments omitted ... */);

Alex Borisov implemented it more conveniently in his port: one should give just array address, like this:

tn_task_create(/* ... several arguments omitted ... */
my_stack,
/* ... several arguments omitted ... */);

TNeoKernel uses the second way (i.e. the way used in port by Alex Borisov), and it does so independently of
architecture.

8.1.3 Task wakeup count, activate count, suspend count

In original TNKernel, requesting non-sleeping task to wake up is quite legal and causes next call to tn_task_←↩
sleep() to not sleep. The same is with suspending/resuming tasks.

So, if you call tn_task_wakeup() on non-sleeping task first time, TERR_NO_ERR is returned. If you call it
second time, before target task called tn_task_sleep(), TERR_OVERFLOW is returned.

All of this seems to me as a complete dirty hack, it probably might be used as a workaround to avoid race condition
problems, or as a hacky replacement for semaphore.

24 Differences from TNKernel API

It just encourages programmer to go with hacky approach, instead of creating straightforward semaphore and
provide proper synchronization.

In TNeoKernel these "features" are removed, and if you try to wake up non-sleeping task, or try to resume non-
suspended task, TN_RC_WSTATE is returned.

By the way, suspend_count is present in TCB structure, but is never used, so, it is just removed. And comments
for wakeup_count, activate_count, suspend_count suggested that these fields are used for statistics,
which is clearly not true.

8.1.4 Fixed memory pool: non-aligned address or block size

In original TNKernel it’s illegal to pass block_size that is less than sizeof(int). But, it is legal to pass
some value that isn’t multiple of sizeof(int): in this case, block_size is silently rounded up, and therefore
block_cnt is silently decremented to fit as many blocks of newly calculated block_size as possible. If
resulting block_cnt is at least 2, it is assumed that everything is fine and we can go on.

Why I don’t like it: firstly, silent behavior like this is generally bad practice that leads to hard-to-catch bugs. Secondly,
it is inconsistency again: why is it legal for block_size not to be multiple of sizeof(int), but it is illegal for it
to be less than sizeof(int)? After all, the latter is the partucular case of the former.

So, TNeoKernel returns TN_RC_WPARAM in these cases. User must provide start_addr and block_size
that are properly aligned.

TNeoKernel also provides convenience macro TN_FMEM_BUF_DEF() for buffer definition, so, as a generic rule,
it is good practice to define buffers for memory pool like this:

//-- number of blocks in the pool
#define MY_MEMORY_BUF_SIZE 8

//-- type for memory block
struct MyMemoryItem {

// ... arbitrary fields ...
};

//-- define buffer for memory pool
TN_FMEM_BUF_DEF(my_fmem_buf, struct MyMemoryItem, MY_MEMORY_BUF_SIZE);

//-- define memory pool structure
struct TN_FMem my_fmem;

And then, construct your my_fmem as follows:

enum TN_RCode rc;
rc = tn_fmem_create(&my_fmem,

my_fmem_buf,
TN_MAKE_ALIG_SIZE(sizeof(struct MyMemoryItem)),
MY_MEMORY_BUF_SIZE);

if (rc != TN_RC_OK){
//-- handle error

}

8.1.5 Task service return values cleaned

In original TNKernel, TERR_WCONTEXT is returned in the following cases:

• call to tn_task_terminate() for already terminated task;

• call to tn_task_delete() for non-terminated task;

• call to tn_task_change_priority() for terminated task;

• call to tn_task_wakeup()/tn_task_iwakeup() for terminated task;

• call to tn_task_release_wait()/tn_task_irelease_wait() for terminated task.

The actual error is, of course, wrong state, not wrong context; so, TNeoKernel returns TN_RC_WSTATE in these
cases.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

8.2 New features 25

8.1.6 Force task releasing from wait

In original TNKernel, a call to tn_task_release_wait() / tn_task_irelease_wait() causes waiting
task to wake up, regardless of wait reason, and TERR_NO_ERR is returned as a wait result. Actually I believe it
is bad idea to ever use tn_task_release_wait(), but if we have this service, error code surely should be
distinguishable from normal wait completion, so, new code is added: TN_RC_FORCED, and it is returned when
task wakes up because of tn_task_release_wait() call.

8.1.7 Return code of tn_task_sleep()

In original TNKernel, tn_task_sleep() always returns TERR_NO_ERR, independently of what actually hap-
pened. In TNeoKernel, there are three possible return codes:

• TN_RC_TIMEOUT if timeout is actually in effect;

• TN_RC_OK if task was woken up by some other task with tn_task_wakeup();

• TN_RC_FORCED if task was woken up forcibly by some other task with tn_task_release_wait();

8.1.8 Events API is changed almost completely

In original TNKernel, I always found events API somewhat confusing. Why is this object named "event", but there
are many flags inside, so that they can actually represent many events?

Meanwhile, attributes like TN_EVENT_ATTR_SINGLE, TN_EVENT_ATTR_CLR imply that "event" object is re-
ally just a single event, since it makes no sense to clear just all event bits when some particular event happened.

After all, when we call tn_event_clear(&my_event_obj, flags), we might expect that flags argu-
ment actually specifies flags to clear. But in fact, we must invert it, to make it work: ∼flags. This is really
confusing.

In TNeoKernel, there is no such event object. Instead, there is object events group. Attributes like ...SINGLE,
...MULTI, ...CLR are removed, since they make no sense for events group. I have plans to offer a way to
connect events group to queue and probably other kernel objects as well, so that queue will set and clear particular
flag in the events group automatically, depending on whether a queue is empty. By means of that, it is quite easy to
wait for data from multiple queues with just a single call to tn_eventgrp_wait().

For detailed API reference, refer to the tn_eventgrp.h.

8.1.9 Zero timeout given to system functions

In original TNKernel, system functions refused to perform job and returned TERR_WRONG_PARAM if timeout is
0, but it is actually neither convenient nor intuitive: it is much better if the function behaves just like ...polling()
version of the function. All TNeoKernel system functions allows timeout to be zero: in this case, function doesn’t
wait.

8.2 New features

8.2.1 Timers

Support of timers was added since TNeoKernel v1.02.

Timer is a kernel object that is used to ask the kernel to call some user-provided function at a particular time in the
future, based on the system timer tick.

If you need to repeatedly wake up particular task, you can create semaphore which you should wait for in the task,
and signal in the timer callback.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

26 Differences from TNKernel API

If you need to perform rather fast action (such as toggle some pin, or the like), consider doing that right in the timer
callback, in order to avoid context switch overhead.

The timer callback approach provides ultimate flexibility.

For details, refer to the timers documentation.

8.2.2 Recursive mutexes

Sometimes I feel lack of mutexes that allow recursive locking. I know there are developers who believe that recursive
locking leads to the code of lower quality, and I understand it. Even Linux kernel doesn’t have recursive mutexes.

Sometimes they are really useful though (say, if you want to use some third-party library that requires locking
primitives to be recursive), so I decided to implement an option for that: TN_MUTEX_REC. If it is non-zero, mutexes
allow recursive locking; otherwise you get TN_RC_ILLEGAL_USE when you try to lock mutex that is already
locked by this task. Default value: 1.

8.2.3 Mutex deadlock detection

TNeoKernel can notify you by calling your callback function if deadlock occurs. See:

• compile-time option TN_MUTEX_DEADLOCK_DETECT,

• tn_callback_deadlock_set(),

• TN_CBDeadlock.

8.2.4 New system services added

Several system services were added:

• tn_cur_task_get() : return a pointer to the struct TN_Task of the currently running task;

• tn_cur_task_body_get() : return pointer to the currently running task body function;

• tn_task_state_get() : get state of the task.

8.3 Compatible API changes

8.3.1 Macro MAKE_ALIG()

There is a terrible mess with MAKE_ALIG() macro: TNKernel docs specify that the argument of it should be the
size to align, but almost all ports, including original one, defined it so that it takes type, not size.

But the port by AlexB implemented it differently (i.e. accordingly to the docs) : it takes size as an argument.

When I was moving from the port by AlexB to another one, do you have any idea how much time it took me to figure
out why do I have rare weird bug? :)

By the way, additional strange thing: why doesn’t this macro have any prefix like TN_?

TNeoKernel provides macro TN_MAKE_ALIG_SIZE() whose argument is size, so, its usage is as follows: TN←↩
_MAKE_ALIG_SIZE(sizeof(struct MyStruct)). This macro is preferred.

But for compatibility with messy MAKE_ALIG() from original TNKernel, there is an option TN_API_MAKE_AL←↩
IG_ARG with two possible values;

• TN_API_MAKE_ALIG_ARG__SIZE - default value, use macro like this: MAKE_ALIG(sizeof(struct
my_struct)), like in the port by Alex.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

8.3 Compatible API changes 27

• TN_API_MAKE_ALIG_ARG__TYPE - use macro like this: MAKE_ALIG(struct my_struct), like
in any other port.

By the way, I wrote to the author of TNKernel (Yuri Tiomkin) about this mess, but he didn’t answer anything. It’s a
pity of course, but we have what we have.

8.3.2 Convenience macros for stack arrays definition

You can still use "manual" definition of stack arrays, like that:

TN_ARCH_STK_ATTR_BEFORE
TN_UWord my_task_stack[MY_TASK_STACK_SIZE]
TN_ARCH_STK_ATTR_AFTER;

Although it is recommended to use convenience macro for that: TN_STACK_ARR_DEF(). See tn_task_←↩
create() for the usage example.

8.3.3 Convenience macros for fixed memory block pool buffers definition

Similarly to the previous section, you can still use "manual" definition of the buffer for fixed memory block pool, it
is recommended to use convenience macro for that: TN_FMEM_BUF_DEF(). See tn_fmem_create() for
usage example.

8.3.4 Things renamed

There is a lot of inconsistency with naming stuff in original TNKernel:

• Why do we have tn_queue_send_polling() / tn_queue_isend_polling() (notice the i
letter before the verb, not before polling), but tn_fmem_get_polling() / tn_fmem_get_←↩
ipolling() (notice the i letter before polling)?

• All the system service names follow the naming scheme tn_<noun>_<verb>[_<adjustment>](),
but the tn_start_system() is special, for some strange reason. To make it consistent, it should be
named tn_system_start() or tn_sys_start();

• A lot of macros don’t have TN_ prefix;

• etc

So, a lot of things (functions, macros, etc) has renamed. Old names are also available through tn_←↩
oldsymbols.h, which is included automatically if TN_OLD_TNKERNEL_NAMES option is non-zero.

8.3.5 We should wait for semaphore, not acquire it

One of the renamings deserves special mentioning: tn_sem_acquire() and friends are renamed to tn_←↩
sem_wait() and friends. That’s because names acquire/release are actually misleading for the semaphore:
semaphore is a signaling mechanism, and not the locking mechanism.

Actually, there’s a lot of confusion about usage of mutexes/semaphores, so it’s quite recommended to read small
article by Michael Barr: Mutexes and Semaphores Demystified.

Old names (tn_sem_acquire() and friends) are still available through tn_oldsymbols.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

http://goo.gl/YprPBW

28 Differences from TNKernel API

8.4 Changes that do not affect API directly

8.4.1 No timer task

Yes, timer task’s job is important: it manages tn_wait_timeout_list, i.e. it wakes up tasks whose timeout
is expired. But it’s actually better to do it right in tn_tick_int_processing() that is called from timer ISR,
because presence of the special task provides significant overhead. Look at what happens when timer interrupt is
fired (assume we don’t use shadow register set for that, which is almost always the case):

(measurements were made at PIC32 port)

• Current context (23 words) is saved to the interrupt stack;

• ISR called: particularly, tn_tick_int_processing() is called;

• tn_tick_int_processing() disables interrupts, manages round-robin (if needed), then it wakes up
tn_timer_task, sets tn_next_task_to_run, and enables interrupts back;

• tn_tick_int_processing() finishes, so ISR macro checks that tn_next_task_to_run is dif-
ferent from tn_curr_run_task, and sets CS0 interrupt bit, so that context should be switched as soon
as possible;

• Context (23 words) gets restored to whatever task we interrupted;

• CS0 ISR is immediately called, so full context (32 words) gets saved on task’s stack, and context of tn_←↩
timer_task is restored;

• tn_timer_task disables interrupts, performs its not so big job (manages tn_wait_timeout_list),
puts itself to wait, enables interrupts and pends context switching again;

• CS0 ISR is immediately called, so full context of tn_timer_task gets saved in its stack, and then, after
all, context of my own interrupted task gets restored and my task continues to run.

I’ve measured with MPLABX’s stopwatch how much time it takes: with just three tasks (idle task, timer task, my
own task with priority 6), i.e. without any sleeping tasks, all this routine takes 682 cycles. So I tried to get rid of
tn_timer_task and perform its job right in the tn_tick_int_processing().

Previously, application callback was called from timer task; since it is removed now, startup routine has changed,
refer to Starting the kernel for details.

Now, the following steps are performed when timer interrupt is fired:

• Current context (23 words) is saved to the interrupt stack;

• ISR called: particularly, tn_tick_int_processing() is called;

• tn_tick_int_processing() disables interrupts, manages round-robin (if needed), manages tn_←↩
wait_timeout_list, and enables interrupts back;

• tn_tick_int_processing() finishes, ISR macro checks that tn_next_task_to_run is the
same as tn_curr_run_task

• Context (23 words) gets restored to whatever task we interrupted;

That’s all. It takes 251 cycles: 2.7 times less.

So, we need to make sure that interrupt stack size is enough for this (not big) job. As a result, RAM is saved (since
you don’t need to allocate stack for timer task) and things work much faster. Win-win.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 9

Unit tests

Brief information on the implementation of unit tests

9.1 How tests are implemented

Briefly: there is a high-priority task like "test director", which creates worker tasks as well as various kernel objects
(queues, mutexes, etc), and then orders to workers, like:

• Task A, you lock the mutex M1

• Task B, you lock the mutex M1

• Task C, you lock the mutex M1

• Task A, you delete the mutex M1

After each step it waits for workers to complete their job, and then checks if things are as expected: task states, task
priorities, last return values of services, various properties of objects, etc.

Detailed log is written to the UART. Typically, for each step, the following is written:

• verbatim comment is written,

• director writes what does it do,

• each worker writes what does it do,

• director checks things and writes detailed report.

Of course there is a mechanism for writing such scenarios. Here is a part of code that specifies the sequence with
locking and deleting mutex explained above:

TNT_TEST_COMMENT("A locks M1");
TNT_ITEM__SEND_CMD_MUTEX(TNT_TASK__A, MUTEX_LOCK, TNT_MUTEX__1);
TNT_ITEM__WAIT_AND_CHECK_DIFF(

TNT_CHECK__MUTEX(TNT_MUTEX__1, HOLDER, TNT_TASK__A);
TNT_CHECK__MUTEX(TNT_MUTEX__1, LOCK_CNT, 1);

TNT_CHECK__TASK(TNT_TASK__A, LAST_RETVAL, TN_RC_OK);
);

TNT_TEST_COMMENT("B tries to lock M1 -> B blocks, A has priority of B");
TNT_ITEM__SEND_CMD_MUTEX(TNT_TASK__B, MUTEX_LOCK, TNT_MUTEX__1);
TNT_ITEM__WAIT_AND_CHECK_DIFF(

TNT_CHECK__TASK(TNT_TASK__B, LAST_RETVAL, TWORKER_MAN__LAST_RETVAL__UNKNOWN);
TNT_CHECK__TASK(TNT_TASK__B, WAIT_REASON, TSK_WAIT_REASON_MUTEX_I);

TNT_CHECK__TASK(TNT_TASK__A, PRIORITY, priority_task_b);
);

30 Unit tests

TNT_TEST_COMMENT("C tries to lock M1 -> C blocks, A has priority of C");
TNT_ITEM__SEND_CMD_MUTEX(TNT_TASK__C, MUTEX_LOCK, TNT_MUTEX__1);
TNT_ITEM__WAIT_AND_CHECK_DIFF(

TNT_CHECK__TASK(TNT_TASK__C, LAST_RETVAL, TWORKER_MAN__LAST_RETVAL__UNKNOWN);
TNT_CHECK__TASK(TNT_TASK__C, WAIT_REASON, TSK_WAIT_REASON_MUTEX_I);

TNT_CHECK__TASK(TNT_TASK__A, PRIORITY, priority_task_c);
);

TNT_TEST_COMMENT("A deleted M1 -> B and C become runnable and have retval TN_RC_DELETED, A has its base
priority");

TNT_ITEM__SEND_CMD_MUTEX(TNT_TASK__A, MUTEX_DELETE, TNT_MUTEX__1);
TNT_ITEM__WAIT_AND_CHECK_DIFF(

TNT_CHECK__TASK(TNT_TASK__B, LAST_RETVAL, TN_RC_DELETED);
TNT_CHECK__TASK(TNT_TASK__C, LAST_RETVAL, TN_RC_DELETED);
TNT_CHECK__TASK(TNT_TASK__B, WAIT_REASON, TSK_WAIT_REASON_DQUE_WRECEIVE)
;
TNT_CHECK__TASK(TNT_TASK__C, WAIT_REASON, TSK_WAIT_REASON_DQUE_WRECEIVE)
;

TNT_CHECK__TASK(TNT_TASK__A, PRIORITY, priority_task_a);

TNT_CHECK__MUTEX(TNT_MUTEX__1, HOLDER, TNT_TASK__NONE);
TNT_CHECK__MUTEX(TNT_MUTEX__1, LOCK_CNT, 0);
TNT_CHECK__MUTEX(TNT_MUTEX__1, EXISTS, 0);
);

And here is the appropriate part of log that is echoed to the UART:

//-- A locks M1 (line 404 in ../source/appl/appl_tntest/appl_tntest_mutex.c)
[I]: tnt_item_proceed():2101: ----- Command to task A: lock mutex M1 (0xa0004c40)
[I]: tnt_item_proceed():2160: Wait 80 ticks
[I]: [Task A]: locking mutex (0xa0004c40)..
[I]: [Task A]: mutex (0xa0004c40) locked
[I]: [Task A]: waiting for command..
[I]: tnt_item_proceed():2178: Checking:
[I]: * Task A: priority=6 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=

TN_RC_OK (as expected)
[I]: * Task B: priority=5 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=NOT-YET-

RECEIVED (as expected)
[I]: * Task C: priority=4 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=NOT-YET-

RECEIVED (as expected)
[I]: * Mutex M1: holder=A (as expected), lock_cnt=1 (as expected), exists=yes (as expected)

//-- B tries to lock M1 -> B blocks, A has priority of B (line 413 in
../source/appl/appl_tntest/appl_tntest_mutex.c)

[I]: tnt_item_proceed():2101: ----- Command to task B: lock mutex M1 (0xa0004c40)
[I]: tnt_item_proceed():2160: Wait 80 ticks
[I]: [Task B]: locking mutex (0xa0004c40)..
[I]: tnt_item_proceed():2178: Checking:
[I]: * Task A: priority=5 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=

TN_RC_OK (as expected)
[I]: * Task B: priority=5 (as expected), wait_reason=MUTEX_I (as expected), last_retval=NOT-YET-RECEIVED (

as expected)
[I]: * Task C: priority=4 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=NOT-YET-

RECEIVED (as expected)
[I]: * Mutex M1: holder=A (as expected), lock_cnt=1 (as expected), exists=yes (as expected)

//-- C tries to lock M1 -> B blocks, A has priority of C (line 422 in
../source/appl/appl_tntest/appl_tntest_mutex.c)

[I]: tnt_item_proceed():2101: ----- Command to task C: lock mutex M1 (0xa0004c40)
[I]: tnt_item_proceed():2160: Wait 80 ticks
[I]: [Task C]: locking mutex (0xa0004c40)..
[I]: tnt_item_proceed():2178: Checking:
[I]: * Task A: priority=4 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=

TN_RC_OK (as expected)
[I]: * Task B: priority=5 (as expected), wait_reason=MUTEX_I (as expected), last_retval=NOT-YET-RECEIVED (

as expected)
[I]: * Task C: priority=4 (as expected), wait_reason=MUTEX_I (as expected), last_retval=NOT-YET-RECEIVED (

as expected)
[I]: * Mutex M1: holder=A (as expected), lock_cnt=1 (as expected), exists=yes (as expected)

//-- A deleted M1 -> B and C become runnable and have retval TN_RC_DELETED, A has its base priority (line
431 in ../source/appl/appl_tntest/appl_tntest_mutex.c)

[I]: tnt_item_proceed():2101: ----- Command to task A: delete mutex M1 (0xa0004c40)
[I]: tnt_item_proceed():2160: Wait 80 ticks
[I]: [Task A]: deleting mutex (0xa0004c40)..
[I]: [Task C]: mutex (0xa0004c40) locking failed with err=-8
[I]: [Task C]: waiting for command..
[I]: [Task B]: mutex (0xa0004c40) locking failed with err=-8
[I]: [Task B]: waiting for command..
[I]: [Task A]: mutex (0xa0004c40) deleted
[I]: [Task A]: waiting for command..
[I]: tnt_item_proceed():2178: Checking:

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

9.2 Get unit-tests 31

[I]: * Task A: priority=6 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=
TN_RC_OK (as expected)

[I]: * Task B: priority=5 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=
TN_RC_DELETED (as expected)

[I]: * Task C: priority=4 (as expected), wait_reason=DQUE_WRECEIVE (as expected), last_retval=
TN_RC_DELETED (as expected)

[I]: * Mutex M1: holder=NONE (as expected), lock_cnt=0 (as expected), exists=no (as expected)

If something goes wrong, there would be no "as expected", but error and explanation what we expected and
what we have. Tests halted.

I do my best to model nearly all possible situations within the each single subsystem (such as mutexes, queues,
etc), including various situations with suspended tasks, deleted tasks, deleted objects, and the like. It helps a lot to
keep the kernel really stable.

9.2 Get unit-tests

Currently, there is a separate repository with unit tests for TNeoKernel.

Please note that code of unit tests project is not as polished as the code of the kernel itself. My open-source time is
limited, and I prefer to invest it in the kernel as much as possible.

Nevertheless, unit tests do their job efficiently, which is needed.

There is an "environment" repository, which contains tests and all the necessary library subrepos: http://hg.←↩
dfrank.ru/tntest/_env

You can clone it as follows:

hg clone http://hg.dfrank.ru/tntest/_env tntest

The single repository with the tests resides here: http://hg.dfrank.ru/tntest/project_common

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

http://hg.dfrank.ru/tntest/_env
http://hg.dfrank.ru/tntest/_env
http://hg.dfrank.ru/tntest/project_common

32 Unit tests

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 10

Plans

I have plans to implement some goodies not yet present in the kernel.

10.1 Event connecting

Sometimes we need to wait, say, for messages from several queues simultaneously; currently, the kernel does not
have built-in support of it. How I plan to implement it: there should be a way to connect an event group and custom
events mask to the data queue. Then, data queue will maintain flag(s) specified by mask: when queue is non-empty,
it will set flag(s) by mask, when queue becomes empty, it will clear these flag(s).

Then, we can connect single event group to several queues passing different flags, and wait for the messages from
all of these queues with just a single call to tn_eventgrp_wait(). When event happened, we just check which
flags are set, and get message from appropriate queue.

34 Plans

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 11

Changelog

TNeoKernel changelog

11.1 v1.03

Release date: 2014-10-20.

• Added a capability to connect an event group to other system objects, particularly to the queue. This offers a
way to wait for messages from multiple queues with just a single system call. Refer to the section Connecting
an event group to other system objects for details. Example project that demonstrates that technique is also
available: examples/queue_eventgrp_conn.

• PIC32 Interrupts: this isn’t a mandatory anymore to use kernel-provided macros tn_soft_isr() or tn←↩
_srs_isr(): interrupts can be defined with standard way too: this particular ISR will use task’s stack
instead of interrupt stack, therefore it takes much more RAM and works a bit faster. There are no additional
constraints on ISR defined without kernel-provided macro: in either ISR, you can call the same set of kernel
services. Refer to the page Interrupts for details.

• Priority 0 is now allowed to use by application (in the original TNKernel, it was reserved for the timer task, but
TNeoKernel does not have timer task)

• Application is now available to specify how many priority levels does it need for, it helps to save a bit of RAM.
For details, refer to TN_PRIORITIES_CNT.

• Added example project examples/queue that demonstrates the pattern on how to use queue together
with fixed memory pool effectively.

11.2 v1.02

Release date: 2014-10-14.

• Added timers: kernel objects that are used to ask the kernel to call some user-provided function at a particular
time in the future;

• Removed tn_sys_time_set() function, because now TNeoKernel uses internal system tick count for
timers, and modifying system tick counter by user is a really bad idea.

11.3 v1.01

Release date: 2014-10-09.

36 Changelog

• FIX: tn_queue_receive() and tn_fmem_get() : if non-zero timeout is in effect, then TN_RC_←↩
TIMEOUT is returned, but user-provided pointer is altered anyway (some garbage data is written there). This
bug was inherited from TNKernel.

• Added tn_task_state_get()

• tn_sem_acquire() and friends are renamed to tn_sem_wait() and friends. More on this read here.
Old name is still available through tn_oldsymbols.h.

11.4 v1.0

Release date: 2014-10-01.

• Initial stable version of TNeoKernel. Lots of work done: thorough review and re-implementation of TNKernel
2.7, implemented detailed unit tests, and so on.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 12

Thanks

There are people that I would like to thank:

• Yuri Tiomkin - for original TNKernel. Although the implementation of TNKernel is far from perfect in my
opinion, the ideas behind the implementation are generally really nice (that’s why I decided to reimplement it
instead of starting from scratch), and it was great entry point to the real-time kernels for me;

• Anders Montonen - for original implementation of TNKernel-PIC32 port;

• Alex Borisov - for TNKernel port which I was using for a long time;

• Alexey Morozov and Alexey Gromov, my chiefs in the ORION company, for being flexible about my time;

• Robert White - for nice ideas.

Thank you guys. TNeoKernel would never be what it is without you.

http://orionspb.ru/

38 Thanks

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 13

Legend

In the functions API documentation, the following designations are used:

• Function can be called from task

• Function can be called from ISR

• Function can switch context to different task

• Function can sleep

40 Legend

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 14

Data Structure Index

14.1 Data Structures

Here are the data structures with brief descriptions:

TN_DQueue
Structure representing data queue object . 45

TN_DQueueTaskWait
DQueue-specific fields related to waiting task, to be included in struct TN_Task 46

TN_EGrpLink
A link to event group: used when event group can be connected to some kernel object, such as
queue . 46

TN_EGrpTaskWait
EventGrp-specific fields related to waiting task, to be included in struct TN_Task 46

TN_EventGrp
Event group . 47

TN_FMem
Fixed memory blocks pool . 47

TN_FMemTaskWait
FMem-specific fields related to waiting task, to be included in struct TN_Task 48

TN_Mutex
Mutex . 48

TN_Sem
Semaphore . 49

TN_Task
Task . 49

TN_Timer
Timer . 51

42 Data Structure Index

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 15

File Index

15.1 File List

Here is a list of all documented files with brief descriptions:

tn.h
The main kernel header file that should be included by user application; it merely includes
subsystem-specific kernel headers . 105

tn_cfg_default.h
TNeoKernel default configuration file, to be copied as tn_cfg.h 105

arch/tn_arch.h
Architecture-dependent routines declaration . 57

arch/example/tn_arch_example.h
Example of architecture-dependent routines . 53

arch/pic32/tn_arch_pic32.h
PIC32 architecture-dependent routines . 56

core/tn_common.h
Definitions used through the whole kernel . 60

core/tn_dqueue.h
A data queue is a FIFO that stores pointer (of type void ∗) in each cell, called (in uITRON
style) a data element . 64

core/tn_eventgrp.h
Event group . 68

core/tn_fmem.h
Fixed memory blocks pool . 72

core/tn_mutex.h
A mutex is an object used to protect shared resource . 76

core/tn_oldsymbols.h
Compatibility layer for old projects that use old TNKernel names; usage of them in new projects
is discouraged . 79

core/tn_sem.h
A semaphore: an object to provide signaling mechanism . 82

core/tn_sys.h
Kernel system routines: system start, tick processing, time slice managing 85

core/tn_tasks.h
Various task services: create, sleep, wake up, terminate, etc 91

core/tn_timer.h
Timer is a kernel object that is used to ask the kernel to call some user-provided function at a
particular time in the future, based on the system timer tick 100

44 File Index

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 16

Data Structure Documentation

16.1 TN_DQueue Struct Reference

16.1.1 Detailed Description

Structure representing data queue object.

Definition at line 105 of file tn_dqueue.h.

Data Fields

• struct TN_ListItem wait_send_list

list of tasks waiting to send data

• struct TN_ListItem wait_receive_list

list of tasks waiting to receive data

• void ∗∗ data_fifo

array of void ∗ to store data queue items. Can be NULL.

• int items_cnt

capacity (total items count). Can be 0.

• int filled_items_cnt

count of non-free items in data_fifo

• int head_idx

index of the item which will be written next time

• int tail_idx

index of the item which will be read next time

• enum TN_ObjId id_dque

id for object validity verification

• struct TN_EGrpLink eventgrp_link

connected event group

The documentation for this struct was generated from the following file:

• core/tn_dqueue.h

46 Data Structure Documentation

16.2 TN_DQueueTaskWait Struct Reference

16.2.1 Detailed Description

DQueue-specific fields related to waiting task, to be included in struct TN_Task.

Definition at line 140 of file tn_dqueue.h.

Data Fields

• void ∗ data_elem

if task tries to send the data to the data queue, and there’s no space in the queue, value to put to queue is stored in
this field

The documentation for this struct was generated from the following file:

• core/tn_dqueue.h

16.3 TN_EGrpLink Struct Reference

16.3.1 Detailed Description

A link to event group: used when event group can be connected to some kernel object, such as queue.

Definition at line 184 of file tn_eventgrp.h.

Data Fields

• struct TN_EventGrp ∗ eventgrp

event group whose event(s) should be managed by other kernel object

• TN_UWord pattern

event pattern to manage

The documentation for this struct was generated from the following file:

• core/tn_eventgrp.h

16.4 TN_EGrpTaskWait Struct Reference

16.4.1 Detailed Description

EventGrp-specific fields related to waiting task, to be included in struct TN_Task.

Definition at line 168 of file tn_eventgrp.h.

Data Fields

• TN_UWord wait_pattern

event wait pattern

• enum TN_EGrpWaitMode wait_mode

event wait mode: AND or OR

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

16.5 TN_EventGrp Struct Reference 47

• TN_UWord actual_pattern

pattern that caused task to finish waiting

The documentation for this struct was generated from the following file:

• core/tn_eventgrp.h

16.5 TN_EventGrp Struct Reference

16.5.1 Detailed Description

Event group.

Definition at line 158 of file tn_eventgrp.h.

Data Fields

• struct TN_ListItem wait_queue

task wait queue
• TN_UWord pattern

current flags pattern
• enum TN_ObjId id_event

id for object validity verification

The documentation for this struct was generated from the following file:

• core/tn_eventgrp.h

16.6 TN_FMem Struct Reference

16.6.1 Detailed Description

Fixed memory blocks pool.

Definition at line 78 of file tn_fmem.h.

Data Fields

• struct TN_ListItem wait_queue

list of tasks waiting for free memory block
• unsigned int block_size

block size (in bytes); note that it should be a multiple of sizeof(TN_UWord}), use a macro TN_MAKE_ALIG←↩
_SIZE() for that.

• int blocks_cnt

capacity (total blocks count)
• int free_blocks_cnt

free blocks count
• void ∗ start_addr

memory pool start address; note that it should be a multiple of sizeof(TN_UWord).
• void ∗ free_list

ptr to free block list
• enum TN_ObjId id_fmp

id for object validity verification

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

48 Data Structure Documentation

16.6.2 Field Documentation

16.6.2.1 unsigned int TN_FMem::block_size

block size (in bytes); note that it should be a multiple of sizeof(TN_UWord}), use a macro TN_MAKE_ALI←↩
G_SIZE() for that.

See also

TN_MAKE_ALIG_SIZE()

Definition at line 88 of file tn_fmem.h.

16.6.2.2 void∗ TN_FMem::start_addr

memory pool start address; note that it should be a multiple of sizeof(TN_UWord).

Definition at line 98 of file tn_fmem.h.

The documentation for this struct was generated from the following file:

• core/tn_fmem.h

16.7 TN_FMemTaskWait Struct Reference

16.7.1 Detailed Description

FMem-specific fields related to waiting task, to be included in struct TN_Task.

Definition at line 112 of file tn_fmem.h.

Data Fields

• void ∗ data_elem

if task tries to receive data from memory pool, and there’s no more free blocks in the pool, location to store pointer is
saved in this field

The documentation for this struct was generated from the following file:

• core/tn_fmem.h

16.8 TN_Mutex Struct Reference

16.8.1 Detailed Description

Mutex.

Definition at line 122 of file tn_mutex.h.

Data Fields

• struct TN_ListItem wait_queue

List of tasks that wait a mutex.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

16.9 TN_Sem Struct Reference 49

• struct TN_ListItem mutex_queue

To include in task’s locked mutexes list (if any)

• struct TN_ListItem deadlock_list

List of other mutexes involved in deadlock (normally, this list is empty)

• enum TN_MutexProtocol protocol

Mutex protocol: priority ceiling or priority inheritance.

• struct TN_Task ∗ holder

Current mutex owner (task that locked mutex)

• int ceil_priority

Used if only protocol is TN_MUTEX_PROT_CEILING: maximum priority of task that may lock the mutex.

• int cnt

Lock count (for recursive locking)

• enum TN_ObjId id_mutex

id for object validity verification

The documentation for this struct was generated from the following file:

• core/tn_mutex.h

16.9 TN_Sem Struct Reference

16.9.1 Detailed Description

Semaphore.

Definition at line 88 of file tn_sem.h.

Data Fields

• struct TN_ListItem wait_queue

List of tasks that wait for the semaphore.

• int count

Current semaphore counter value.

• int max_count

Max value of count

• enum TN_ObjId id_sem

id for object validity verification

The documentation for this struct was generated from the following file:

• core/tn_sem.h

16.10 TN_Task Struct Reference

16.10.1 Detailed Description

Task.

Definition at line 173 of file tn_tasks.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

50 Data Structure Documentation

Data Fields

• TN_UWord ∗ stack_top

pointer to task’s current top of the stack; Note that this field must be a first field in the struct, this fact is exploited by
platform-specific routines.

• struct TN_ListItem task_queue

queue is used to include task in ready/wait lists

• struct TN_Timer timer

timer object to implement task waiting for timeout

• struct TN_ListItem ∗ pwait_queue

pointer to object’s (semaphore, mutex, event, etc) wait list in which task is included for waiting

• struct TN_ListItem create_queue

queue is used to include task in creation list (currently, this list is used for statistics only)

• struct TN_ListItem mutex_queue

list of all mutexes that are locked by task

• struct TN_ListItem deadlock_list

list of other tasks involved in deadlock.

• TN_UWord ∗ base_stack_top

base top of the stack for this task

• int stack_size

size of task’s stack (in sizeof(TN_UWord), not bytes)

• TN_TaskBody ∗ task_func_addr

pointer to task’s body function given to tn_task_create()

• void ∗ task_func_param

pointer to task’s parameter given to tn_task_create()

• int base_priority

base priority of the task (actual current priority may be higher than base priority because of mutex)

• int priority

current task priority

• enum TN_ObjId id_task

id for object validity verification

• enum TN_TaskState task_state

task state

• enum TN_WaitReason task_wait_reason

reason for waiting (relevant if only task_state is WAIT or WAIT+SUSPEND)

• enum TN_RCode task_wait_rc

waiting result code (reason why waiting finished)

• int tslice_count

time slice counter

• union {
struct TN_EGrpTaskWait eventgrp

fields specific to tn_eventgrp.h
struct TN_DQueueTaskWait dqueue

fields specific to tn_dqueue.h
struct TN_FMemTaskWait fmem

fields specific to tn_fmem.h
} subsys_wait

subsystem-specific fields that are used while task waits for something.

• const char ∗ name

task name for debug purposes, user may want to set it by hand

• unsigned priority_already_updated: 1

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

16.11 TN_Timer Struct Reference 51

Internal flag used to optimize mutex priority algorithms.

• unsigned waited: 1

Flag indicates that task waited for something This flag is set automatially in _tn_task_set_waiting() Must be
cleared manually before calling any service that could sleep, if the caller is interested in the relevant value of this flag.

16.10.2 Field Documentation

16.10.2.1 TN_UWord∗ TN_Task::stack_top

pointer to task’s current top of the stack; Note that this field must be a first field in the struct, this fact is exploited by
platform-specific routines.

Definition at line 177 of file tn_tasks.h.

16.10.2.2 struct TN_ListItem TN_Task::deadlock_list

list of other tasks involved in deadlock.

This list is non-empty only in emergency cases, and it is here to help you fix your bug that led to deadlock.

See also

TN_MUTEX_DEADLOCK_DETECT

Definition at line 207 of file tn_tasks.h.

16.10.2.3 union { ... } TN_Task::subsys_wait

subsystem-specific fields that are used while task waits for something.

Do note that these fields are grouped by union, so, they must not interfere with each other. It’s quite ok here because
task can’t wait for different things.

16.10.2.4 unsigned TN_Task::priority_already_updated

Internal flag used to optimize mutex priority algorithms.

For the comments on it, see file tn_mutex.c, function _mutex_do_unlock().

Definition at line 278 of file tn_tasks.h.

16.10.2.5 unsigned TN_Task::waited

Flag indicates that task waited for something This flag is set automatially in _tn_task_set_waiting() Must
be cleared manually before calling any service that could sleep, if the caller is interested in the relevant value of this
flag.

Definition at line 284 of file tn_tasks.h.

The documentation for this struct was generated from the following file:

• core/tn_tasks.h

16.11 TN_Timer Struct Reference

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

52 Data Structure Documentation

16.11.1 Detailed Description

Timer.

Definition at line 202 of file tn_timer.h.

Data Fields

• struct TN_ListItem timer_queue

A list item to be included in the system timer queue.

• TN_TimerFunc ∗ func

Function to be called by timer.

• void ∗ p_user_data

User data pointer that is given to user-provided func.

• TN_Timeout timeout_cur

Current (left) timeout value.

• enum TN_ObjId id_timer

id for object validity verification

The documentation for this struct was generated from the following file:

• core/tn_timer.h

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Chapter 17

File Documentation

17.1 arch/example/tn_arch_example.h File Reference

17.1.1 Detailed Description

Example of architecture-dependent routines.

Definition in file tn_arch_example.h.

Macros

• #define _TN_FFS(x) (32 - __builtin_clz((x) & (0 - (x))))

FFS - find first set bit.

• #define _TN_FATAL_ERROR(error_msg,...) {__asm__ volatile(" sdbbp 0"); __asm__ volatile ("nop");}

Used by the kernel as a signal that something really bad happened.

• #define TN_ARCH_STK_ATTR_BEFORE

Compiler-specific attribute that should be placed before declaration of array used for stack.

• #define TN_ARCH_STK_ATTR_AFTER __attribute__((aligned(0x8)))

Compiler-specific attribute that should be placed after declaration of array used for stack.

• #define TN_MIN_STACK_SIZE 36

Minimum task’s stack size, in words, not in bytes; includes a space for context plus for parameters passed to task’s
body function.

• #define TN_INT_WIDTH 32

Width of int type.

• #define TN_PRIORITIES_MAX_CNT TN_INT_WIDTH

Maximum number of priorities available, this value usually matches TN_INT_WIDTH.

• #define TN_WAIT_INFINITE 0xFFFFFFFF

Value for infinite waiting, usually matches UINT_MAX

• #define TN_FILL_STACK_VAL 0xFEEDFACE

Value for initializing the unused space of task’s stack.

• #define TN_INTSAVE_DATA int tn_save_status_reg = 0;

Declares variable that is used by macros TN_INT_DIS_SAVE() and TN_INT_RESTORE() for storing status
register value.

• #define TN_INTSAVE_DATA_INT TN_INTSAVE_DATA

The same as TN_INTSAVE_DATA but for using in ISR together with TN_INT_IDIS_SAVE(), TN_INT_IRE←↩
STORE().

• #define TN_INT_DIS_SAVE() tn_save_status_reg = tn_arch_sr_save_int_dis()

Disable interrupts and return previous value of status register, atomically.

54 File Documentation

• #define TN_INT_RESTORE() tn_arch_sr_restore(tn_save_status_reg)

Restore previously saved status register.

• #define TN_INT_IDIS_SAVE() TN_INT_DIS_SAVE()

The same as TN_INT_DIS_SAVE() but for using in ISR.

• #define TN_INT_IRESTORE() TN_INT_RESTORE()

The same as TN_INT_RESTORE() but for using in ISR.

• #define TN_IS_INT_DISABLED() ((__builtin_mfc0(12, 0) & 1) == 0)

Returns nonzero if interrupts are disabled, zero otherwise.

• #define _TN_CONTEXT_SWITCH_IPEND_IF_NEEDED() _tn_context_switch_pend_if_needed()

Pend context switch from interrupt.

Typedefs

• typedef unsigned int TN_UWord

Unsigned integer type whose size is equal to the size of CPU register.

17.1.2 Macro Definition Documentation

17.1.2.1 #define _TN_FFS(x) (32 - __builtin_clz((x) & (0 - (x))))

FFS - find first set bit.

Used in _find_next_task_to_run() function. Say, for 0xa8 it should return 3.

May be not defined: in this case, naive algorithm will be used.

Definition at line 53 of file tn_arch_example.h.

17.1.2.2 #define _TN_FATAL_ERROR(error_msg, ...) {__asm__ volatile(" sdbbp 0"); __asm__ volatile ("nop");}

Used by the kernel as a signal that something really bad happened.

Indicates TNeoKernel bugs as well as illegal kernel usage (e.g. sleeping in the idle task callback)

Typically, set to assembler instruction that causes debugger to halt.

Definition at line 62 of file tn_arch_example.h.

17.1.2.3 #define TN_ARCH_STK_ATTR_BEFORE

Compiler-specific attribute that should be placed before declaration of array used for stack.

It is needed because there are often additional restrictions applied to alignment of stack, so, to meet them, stack
arrays need to be declared with these macros.

See also

TN_ARCH_STK_ATTR_AFTER

Definition at line 76 of file tn_arch_example.h.

17.1.2.4 #define TN_ARCH_STK_ATTR_AFTER __attribute__((aligned(0x8)))

Compiler-specific attribute that should be placed after declaration of array used for stack.

It is needed because there are often additional restrictions applied to alignment of stack, so, to meet them, stack
arrays need to be declared with these macros.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.1 arch/example/tn_arch_example.h File Reference 55

See also

TN_ARCH_STK_ATTR_BEFORE

Definition at line 87 of file tn_arch_example.h.

17.1.2.5 #define TN_PRIORITIES_MAX_CNT TN_INT_WIDTH

Maximum number of priorities available, this value usually matches TN_INT_WIDTH.

See also

TN_PRIORITIES_CNT

Definition at line 112 of file tn_arch_example.h.

17.1.2.6 #define TN_INTSAVE_DATA int tn_save_status_reg = 0;

Declares variable that is used by macros TN_INT_DIS_SAVE() and TN_INT_RESTORE() for storing status
register value.

See also

TN_INT_DIS_SAVE()
TN_INT_RESTORE()

Definition at line 134 of file tn_arch_example.h.

17.1.2.7 #define TN_INTSAVE_DATA_INT TN_INTSAVE_DATA

The same as TN_INTSAVE_DATA but for using in ISR together with TN_INT_IDIS_SAVE(), TN_INT_IR←↩
ESTORE().

See also

TN_INT_IDIS_SAVE()
TN_INT_IRESTORE()

Definition at line 143 of file tn_arch_example.h.

17.1.2.8 #define TN_INT_DIS_SAVE() tn_save_status_reg = tn_arch_sr_save_int_dis()

Disable interrupts and return previous value of status register, atomically.

Similar tn_arch_sr_save_int_dis(), but implemented as a macro, so it is potentially faster.

Uses TN_INTSAVE_DATA as a temporary storage.

See also

TN_INTSAVE_DATA
tn_arch_sr_save_int_dis()

Definition at line 155 of file tn_arch_example.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

56 File Documentation

17.1.2.9 #define TN_INT_RESTORE() tn_arch_sr_restore(tn_save_status_reg)

Restore previously saved status register.

Similar to tn_arch_sr_restore(), but implemented as a macro, so it is potentially faster.

Uses TN_INTSAVE_DATA as a temporary storage.

See also

TN_INTSAVE_DATA
tn_arch_sr_save_int_dis()

Definition at line 167 of file tn_arch_example.h.

17.1.2.10 #define TN_INT_IDIS_SAVE() TN_INT_DIS_SAVE()

The same as TN_INT_DIS_SAVE() but for using in ISR.

Uses TN_INTSAVE_DATA_INT as a temporary storage.

See also

TN_INTSAVE_DATA_INT

Definition at line 176 of file tn_arch_example.h.

17.1.2.11 #define TN_INT_IRESTORE() TN_INT_RESTORE()

The same as TN_INT_RESTORE() but for using in ISR.

Uses TN_INTSAVE_DATA_INT as a temporary storage.

See also

TN_INTSAVE_DATA_INT

Definition at line 185 of file tn_arch_example.h.

17.1.3 Typedef Documentation

17.1.3.1 typedef unsigned int TN_UWord

Unsigned integer type whose size is equal to the size of CPU register.

Typically it’s plain unsigned int.

Definition at line 104 of file tn_arch_example.h.

17.2 arch/pic32/tn_arch_pic32.h File Reference

17.2.1 Detailed Description

PIC32 architecture-dependent routines.

Definition in file tn_arch_pic32.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.3 arch/tn_arch.h File Reference 57

Macros

• #define tn_soft_isr(vec)

Interrupt handler wrapper macro for software context saving.

• #define tn_srs_isr(vec)

Interrupt handler wrapper macro for shadow register context saving.

17.2.2 Macro Definition Documentation

17.2.2.1 #define tn_soft_isr(vec)

Interrupt handler wrapper macro for software context saving.

Usage looks like the following:

tn_soft_isr(_TIMER_1_VECTOR)
{

INTClearFlag(INT_T1);

//-- do something useful
}

Note that you should not use __ISR(_TIMER_1_VECTOR) macro for that.

Parameters

vec interrupt vector number, such as _TIMER_1_VECTOR, etc.

Definition at line 283 of file tn_arch_pic32.h.

17.2.2.2 #define tn_srs_isr(vec)

Interrupt handler wrapper macro for shadow register context saving.

Usage looks like the following:

tn_srs_isr(_INT_UART_1_VECTOR)
{

INTClearFlag(INT_U1);

//-- do something useful
}

Note that you should not use __ISR(_INT_UART_1_VECTOR) macro for that.

Parameters

vec interrupt vector number, such as _TIMER_1_VECTOR, etc.

Definition at line 432 of file tn_arch_pic32.h.

17.3 arch/tn_arch.h File Reference

17.3.1 Detailed Description

Architecture-dependent routines declaration.

Definition in file tn_arch.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

58 File Documentation

Functions

• void tn_arch_int_dis (void)

Unconditionally disable interrupts.
• void tn_arch_int_en (void)

Unconditionally enable interrupts.
• TN_UWord tn_arch_sr_save_int_dis (void)

Disable interrupts and return previous value of status register, atomically.
• void tn_arch_sr_restore (TN_UWord sr)

Restore previously saved status register.
• TN_UWord ∗ _tn_arch_stack_top_get (TN_UWord ∗stack_low_address, int stack_size)

Should return top of the stack, which may be either:
• TN_UWord ∗ _tn_arch_stack_init (TN_TaskBody ∗task_func, TN_UWord ∗stack_top, void ∗param)

Should put initial CPU context to the provided stack pointer for new task and return current stack pointer.
• int _tn_arch_inside_isr (void)

Should return 1 if ISR is currently running, 0 otherwise.
• void _tn_arch_context_switch_pend (void)

Called whenever we need to switch context from one task to another.
• void _tn_arch_context_switch_now_nosave (void)

Called whenever we need to switch context to new task, but don’t save current context.

17.3.2 Function Documentation

17.3.2.1 TN_UWord tn_arch_sr_save_int_dis (void)

Disable interrupts and return previous value of status register, atomically.

See also

tn_arch_sr_restore()

17.3.2.2 void tn_arch_sr_restore (TN_UWord sr)

Restore previously saved status register.

Parameters

sr status register value previously from tn_arch_sr_save_int_dis()

See also

tn_arch_sr_save_int_dis()

17.3.2.3 TN_UWord∗ _tn_arch_stack_top_get (TN_UWord ∗ stack_low_address, int stack_size)

Should return top of the stack, which may be either:

• (stack_low_address - 1)

• (stack_low_address + stack_size)

(depending on the architecture)

NOTE that returned top of the stack is NOT the address which may be used for storing the new data. Instead, it is
the previous address.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.3 arch/tn_arch.h File Reference 59

Parameters

stack_low_←↩
address

start address of the stack array.

stack_size size of the stack in TN_UWord-s, not in bytes.

17.3.2.4 TN_UWord∗ _tn_arch_stack_init (TN_TaskBody ∗ task_func, TN_UWord ∗ stack_top, void ∗ param)

Should put initial CPU context to the provided stack pointer for new task and return current stack pointer.

When resulting context gets restored by _tn_arch_context_switch_now_nosave() or _tn_arch_←↩
context_switch_pend(), the following conditions should be met:

• Interrupts are enabled;

• Return address is set to tn_task_exit(), so that when task body function returns, tn_task_exit()
gets automatially called;

• Argument 0 contains param pointer

Parameters

task_func Pointer to task body function.
stack_top Top of the stack, returned by _tn_arch_stack_top_get().

param User-provided parameter for task body function.

Returns

current stack pointer (top of the stack)

17.3.2.5 void _tn_arch_context_switch_pend (void)

Called whenever we need to switch context from one task to another.

This function typically does NOT switch context; it merely pends it, that is, it sets appropriate interrupt flag. If current
level is an application level, interrupt is fired immediately, and context gets switched.

But, if it’s hard or impossible on particular platform to use dedicated interrupt flag, this function may just switch the
context on its own.

Preconditions:

• interrupts are enabled;

• tn_curr_run_task points to currently running (preempted) task;

• tn_next_task_to_run points to new task to run.

Actions to perform in actual context switching routine:

• save context of the preempted task to its stack;

• set tn_curr_run_task to tn_next_task_to_run;

• restore context of the newly activated task from its stack.

See also

tn_curr_run_task
tn_next_task_to_run

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

60 File Documentation

17.3.2.6 void _tn_arch_context_switch_now_nosave (void)

Called whenever we need to switch context to new task, but don’t save current context.

This happens:

• At system start, inside tn_sys_start();

• At task exit, inside tn_task_exit()

This function doesn’t pend context switch, it switches context immediately.

Preconditions:

• interrupts are disabled;

• tn_next_task_to_run is already set to needed task.

Actions to perform:

• set tn_curr_run_task to tn_next_task_to_run;

• restore context of the newly activated task from its stack.

See also

tn_curr_run_task
tn_next_task_to_run

17.4 core/tn_common.h File Reference

17.4.1 Detailed Description

Definitions used through the whole kernel.

Definition in file tn_common.h.

Macros

• #define TN_API_MAKE_ALIG_ARG__TYPE 1

In this case, you should use macro like this: TN_MAKE_ALIG(struct my_struct).

• #define TN_API_MAKE_ALIG_ARG__SIZE 2

In this case, you should use macro like this: TN_MAKE_ALIG(sizeof(struct my_struct)).

• #define NULL ((void ∗)0)

NULL pointer definition.

• #define BOOL int

boolean type definition

• #define TRUE (1 == 1)

true value definition for type BOOL

• #define FALSE (1 == 0)

false value definition for type BOOL

• #define TN_MAKE_ALIG_SIZE(a) (((a) + (sizeof(TN_UWord) - 1)) & (∼(sizeof(TN_UWord) - 1)))

Macro for making a number a multiple of sizeof(TN_UWord), should be used with fixed memory block pool.

• #define TN_MAKE_ALIG(a) TN_MAKE_ALIG_SIZE(a)

The same as TN_MAKE_ALIG_SIZE but its behavior depends on the option TN_API_MAKE_ALIG_ARG

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.4 core/tn_common.h File Reference 61

Typedefs

• typedef void(TN_TaskBody)(void ∗param)

Prototype for task body function.

• typedef unsigned long TN_Timeout

The value representing maximum number of system ticks to wait.

Enumerations

• enum TN_ObjId {
TN_ID_TASK = 0x47ABCF69, TN_ID_SEMAPHORE = 0x6FA173EB, TN_ID_EVENTGRP = 0x5E224F25,
TN_ID_DATAQUEUE = 0x8C8A6C89,
TN_ID_FSMEMORYPOOL = 0x26B7CE8B, TN_ID_MUTEX = 0x17129E45, TN_ID_TIMER = 0x9A937FBC
}

Magic number for object validity verification.

• enum TN_RCode {
TN_RC_OK = 0, TN_RC_TIMEOUT = -1, TN_RC_OVERFLOW = -2, TN_RC_WCONTEXT = -3,
TN_RC_WSTATE = -4, TN_RC_WPARAM = -5, TN_RC_ILLEGAL_USE = -6, TN_RC_INVALID_OBJ = -7,
TN_RC_DELETED = -8, TN_RC_FORCED = -9, TN_RC_INTERNAL = -10 }

Result code returned by kernel services.

17.4.2 Macro Definition Documentation

17.4.2.1 #define TN_API_MAKE_ALIG_ARG__TYPE 1

In this case, you should use macro like this: TN_MAKE_ALIG(struct my_struct).

This way is used in the majority of TNKernel ports. (actually, in all ports except the one by AlexB)

Definition at line 56 of file tn_common.h.

17.4.2.2 #define TN_API_MAKE_ALIG_ARG__SIZE 2

In this case, you should use macro like this: TN_MAKE_ALIG(sizeof(struct my_struct)).

This way is stated in TNKernel docs and used in the port for dsPIC/PIC24/PIC32 by AlexB.

Definition at line 63 of file tn_common.h.

17.4.2.3 #define TN_MAKE_ALIG_SIZE(a) (((a) + (sizeof(TN_UWord) - 1)) & (∼(sizeof(TN_UWord) - 1)))

Macro for making a number a multiple of sizeof(TN_UWord), should be used with fixed memory block pool.

See tn_fmem_create() for usage example.

Definition at line 239 of file tn_common.h.

17.4.2.4 #define TN_MAKE_ALIG(a) TN_MAKE_ALIG_SIZE(a)

The same as TN_MAKE_ALIG_SIZE but its behavior depends on the option TN_API_MAKE_ALIG_ARG

Attention

it is recommended to use TN_MAKE_ALIG_SIZE macro instead of this one, in order to avoid confusion
caused by various TNKernel ports: refer to the section Macro MAKE_ALIG() for details.

Definition at line 263 of file tn_common.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

62 File Documentation

17.4.3 Typedef Documentation

17.4.3.1 typedef unsigned long TN_Timeout

The value representing maximum number of system ticks to wait.

Assume user called some system function, and it can’t perform its job immediately (say, it needs to lock mutex but
it is already locked, etc).

So, function can wait or return an error. There are possible timeout values and appropriate behavior of the
function:

• timeout is set to 0: function doesn’t wait at all, no context switch is performed, TN_RC_TIMEOUT is
returned immediately.

• timeout is set to TN_WAIT_INFINITE: function waits until it eventually can perform its job. Timeout is
not taken in account, so TN_RC_TIMEOUT is never returned.

• timeout is set to other value: function waits at most specified number of system ticks. Strictly speaking, it
waits from (timeout - 1) to timeout ticks. So, if you specify that timeout is 1, be aware that it might
actually don’t wait at all: if system timer interrupt happens just while function is putting task to wait (with
interrupts disabled), then ISR will be executed right after function puts task to wait. Then tn_tick_int←↩
_processing() will immediately remove the task from wait queue and make it runnable again.

So, to guarantee that task waits at least 1 system tick, you should specify timeout value of 2.

Note also that there are other possible ways to make task runnable:

• if task waits because of call to tn_task_sleep(), it may be woken up by some other task, by means of
tn_task_wakeup(). In this case, tn_task_sleep() returns TN_RC_OK.

• independently of the wait reason, task may be released from wait forcibly, by means of tn_task_←↩
release_wait(). It this case, TN_RC_FORCED is returned by the waiting function. (the usage of the
tn_task_release_wait() function is discouraged though)

Definition at line 203 of file tn_common.h.

17.4.4 Enumeration Type Documentation

17.4.4.1 enum TN_ObjId

Magic number for object validity verification.

Enumerator

TN_ID_TASK id for tasks

TN_ID_SEMAPHORE id for semaphores

TN_ID_EVENTGRP id for event groups

TN_ID_DATAQUEUE id for data queues

TN_ID_FSMEMORYPOOL id for fixed memory pools

TN_ID_MUTEX id for mutexes

TN_ID_TIMER id for timers

Definition at line 87 of file tn_common.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.4 core/tn_common.h File Reference 63

17.4.4.2 enum TN_RCode

Result code returned by kernel services.

Enumerator

TN_RC_OK Successful operation.

TN_RC_TIMEOUT Timeout (consult TN_Timeout for details).

See also

TN_Timeout

TN_RC_OVERFLOW This code is returned in the following cases:

• Trying to increment semaphore count more than its max count;

• Trying to return extra memory block to fixed memory pool.
See also

tn_sem.h
tn_fmem.h

TN_RC_WCONTEXT Wrong context error: returned if function is called from non-acceptable context. Re-
quired context suggested for every function by badges:

• - function can be called from task;

• - function can be called from ISR.

See also

tn_sys_context_get()
enum TN_Context

TN_RC_WSTATE Wrong task state error: requested operation requires different task state.

TN_RC_WPARAM This code is returned by most of the kernel functions when wrong params were given to
function. This error code can be returned if only build-time option TN_CHECK_PARAM is non-zero

See also

TN_CHECK_PARAM

TN_RC_ILLEGAL_USE Illegal usage. Returned in the following cases:

• task tries to unlock or delete the mutex that is locked by different task,

• task tries to lock mutex with priority ceiling whose priority is lower than task’s priority
See also

tn_mutex.h

TN_RC_INVALID_OBJ Returned when user tries to perform some operation on invalid object (mutex,
semaphore, etc). Object validity is checked by comparing special id_... field value with the value
from enum TN_ObjId

See also

TN_CHECK_PARAM

TN_RC_DELETED Object for whose event task was waiting is deleted.

TN_RC_FORCED Task was released from waiting forcibly because some other task called tn_task_←↩
release_wait()

TN_RC_INTERNAL Internal kernel error, should never be returned by kernel services. If it is returned, it’s a
bug in the kernel.

Definition at line 100 of file tn_common.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

64 File Documentation

17.5 core/tn_dqueue.h File Reference

17.5.1 Detailed Description

A data queue is a FIFO that stores pointer (of type void ∗) in each cell, called (in uITRON style) a data element.

A data queue also has an associated wait queue each for sending (wait_send queue) and for receiving (wait←↩
_receive queue). A task that sends a data element tries to put the data element into the FIFO. If there is no
space left in the FIFO, the task is switched to the waiting state and placed in the data queue’s wait_send queue
until space appears (another task gets a data element from the data queue).

A task that receives a data element tries to get a data element from the FIFO. If the FIFO is empty (there is no data
in the data queue), the task is switched to the waiting state and placed in the data queue’s wait_receive queue
until data element arrive (another task puts some data element into the data queue). To use a data queue just for
the synchronous message passing, set size of the FIFO to 0. The data element to be sent and received can be
interpreted as a pointer or an integer and may have value 0 (NULL).

For the useful pattern on how to use queue together with fixed memory pool, refer to the example←↩
: examples/queue. Be sure to examine the readme there.

TNeoKernel offers a way to wait for a message from multiple queues in just a single call, refer to the section
Connecting an event group to other system objects for details. Related queue services:

• tn_queue_eventgrp_connect()

• tn_queue_eventgrp_disconnect()

There is an example project available that demonstrates event group connection technique: examples/queue←↩
_eventgrp_conn. Be sure to examine the readme there.

Definition in file tn_dqueue.h.

Data Structures

• struct TN_DQueue

Structure representing data queue object.

• struct TN_DQueueTaskWait

DQueue-specific fields related to waiting task, to be included in struct TN_Task.

Functions

• enum TN_RCode tn_queue_create (struct TN_DQueue ∗dque, void ∗∗data_fifo, int items_cnt)

Construct data queue.

• enum TN_RCode tn_queue_delete (struct TN_DQueue ∗dque)

Destruct data queue.

• enum TN_RCode tn_queue_send (struct TN_DQueue ∗dque, void ∗p_data, TN_Timeout timeout)

Send the data element specified by the p_data to the data queue specified by the dque.

• enum TN_RCode tn_queue_send_polling (struct TN_DQueue ∗dque, void ∗p_data)

The same as tn_queue_send() with zero timeout.

• enum TN_RCode tn_queue_isend_polling (struct TN_DQueue ∗dque, void ∗p_data)

The same as tn_queue_send() with zero timeout, but for using in the ISR.

• enum TN_RCode tn_queue_receive (struct TN_DQueue ∗dque, void ∗∗pp_data, TN_Timeout timeout)

Receive the data element from the data queue specified by the dque and place it into the address specified by the
pp_data.

• enum TN_RCode tn_queue_receive_polling (struct TN_DQueue ∗dque, void ∗∗pp_data)

The same as tn_queue_receive() with zero timeout.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.5 core/tn_dqueue.h File Reference 65

• enum TN_RCode tn_queue_ireceive_polling (struct TN_DQueue ∗dque, void ∗∗pp_data)

The same as tn_queue_receive() with zero timeout, but for using in the ISR.

• enum TN_RCode tn_queue_eventgrp_connect (struct TN_DQueue ∗dque, struct TN_EventGrp ∗eventgrp,
TN_UWord pattern)

Connect an event group to the queue.

• enum TN_RCode tn_queue_eventgrp_disconnect (struct TN_DQueue ∗dque)

Disconnect a connected event group from the queue.

17.5.2 Function Documentation

17.5.2.1 enum TN_RCode tn_queue_create (struct TN_DQueue ∗ dque, void ∗∗ data_fifo, int items_cnt)

Construct data queue.

id_dque member should not contain TN_ID_DATAQUEUE, otherwise, TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

dque pointer to already allocated struct TN_DQueue.
data_fifo pointer to already allocated array of void ∗ to store data queue items. Can be NULL.

items_cnt capacity of queue (count of elements in the data_fifo array) Can be 0.

Returns

• TN_RC_OK if queue was successfully created;

• If TN_CHECK_PARAM is non-zero, additional return code is available: TN_RC_WPARAM.

17.5.2.2 enum TN_RCode tn_queue_delete (struct TN_DQueue ∗ dque)

Destruct data queue.

All tasks that wait for writing to or reading from the queue become runnable with TN_RC_DELETED code returned.
TN_RCode, struct TN_Task.

(refer to Legend for details)

Parameters

dque pointer to data queue to be deleted

Returns

• TN_RC_OK if queue was successfully deleted;

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.5.2.3 enum TN_RCode tn_queue_send (struct TN_DQueue ∗ dque, void ∗ p_data, TN_Timeout timeout)

Send the data element specified by the p_data to the data queue specified by the dque.

If there are tasks in the data queue’s wait_receive list already, the function releases the task from the head
of the wait_receive list, makes this task runnable and transfers the parameter p_data to task’s function, that
caused it to wait.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

66 File Documentation

If there are no tasks in the data queue’s wait_receive list, parameter p_data is placed to the tail of data FIFO.
If the data FIFO is full, behavior depends on the timeout value: refer to TN_Timeout.

(refer to Legend for details)

Parameters

dque pointer to data queue to send data to
p_data value to send
timeout refer to TN_Timeout

Returns

• TN_RC_OK if data was successfully sent;

• TN_RC_WCONTEXT if called from wrong context;

• Other possible return codes depend on timeout value, refer to TN_Timeout

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

See also

TN_Timeout

17.5.2.4 enum TN_RCode tn_queue_send_polling (struct TN_DQueue ∗ dque, void ∗ p_data)

The same as tn_queue_send() with zero timeout.

(refer to Legend for details)

17.5.2.5 enum TN_RCode tn_queue_isend_polling (struct TN_DQueue ∗ dque, void ∗ p_data)

The same as tn_queue_send() with zero timeout, but for using in the ISR.

(refer to Legend for details)

17.5.2.6 enum TN_RCode tn_queue_receive (struct TN_DQueue ∗ dque, void ∗∗ pp_data, TN_Timeout timeout)

Receive the data element from the data queue specified by the dque and place it into the address specified by the
pp_data.

If the FIFO already has data, function removes an entry from the end of the data queue FIFO and returns it into the
pp_data function parameter.

If there are task(s) in the data queue’s wait_send list, first one gets removed from the head of wait_send
list, becomes runnable and puts the data entry, stored in this task, to the tail of data FIFO. If there are no entries
in the data FIFO and there are no tasks in the wait_send list, behavior depends on the timeout value: refer to
TN_Timeout.

(refer to Legend for details)

Parameters

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.5 core/tn_dqueue.h File Reference 67

dque pointer to data queue to receive data from
pp_data pointer to location to store the value
timeout refer to TN_Timeout

Returns

• TN_RC_OK if data was successfully received;

• TN_RC_WCONTEXT if called from wrong context;

• Other possible return codes depend on timeout value, refer to TN_Timeout

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

See also

TN_Timeout

17.5.2.7 enum TN_RCode tn_queue_receive_polling (struct TN_DQueue ∗ dque, void ∗∗ pp_data)

The same as tn_queue_receive() with zero timeout.

(refer to Legend for details)

17.5.2.8 enum TN_RCode tn_queue_ireceive_polling (struct TN_DQueue ∗ dque, void ∗∗ pp_data)

The same as tn_queue_receive() with zero timeout, but for using in the ISR.

(refer to Legend for details)

17.5.2.9 enum TN_RCode tn_queue_eventgrp_connect (struct TN_DQueue ∗ dque, struct TN_EventGrp ∗ eventgrp,
TN_UWord pattern)

Connect an event group to the queue.

Refer to the section Connecting an event group to other system objects for details.

Only one event group can be connected to the queue at a time. If you connect event group while another event
group is already connected, the old link is discarded.

Parameters

dque queue to which event group should be connected
eventgrp event groupt to connect

pattern flags pattern that should be managed by the queue automatically

(refer to Legend for details)

17.5.2.10 enum TN_RCode tn_queue_eventgrp_disconnect (struct TN_DQueue ∗ dque)

Disconnect a connected event group from the queue.

Refer to the section Connecting an event group to other system objects for details.

If there is no event group connected, nothing is changed.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

68 File Documentation

Parameters

dque queue from which event group should be disconnected

(refer to Legend for details)

17.6 core/tn_eventgrp.h File Reference

17.6.1 Detailed Description

Event group.

An event group has an internal variable (of type TN_UWord), which is interpreted as a bit pattern where each bit
represents an event. An event group also has a wait queue for the tasks waiting on these events. A task may set
specified bits when an event occurs and may clear specified bits when necessary.

The tasks waiting for an event(s) are placed in the event group’s wait queue. An event group is a very suitable
synchronization object for cases where (for some reasons) one task has to wait for many tasks, or vice versa, many
tasks have to wait for one task.

17.6.2 Connecting an event group to other system objects

Sometimes task needs to wait for different system events, the most common examples are:

• wait for a message from the queue(s) plus wait for some application-dependent event;

• wait for messages from multiple queues.

If the kernel doesn’t offer a mechanism for that, programmer usually have to use polling services on these queues
and sleep for a few system ticks. Obviously, this approach has serious drawbacks: we have a lot of useless context
switches, and response for the message gets much slower. Actually, we lost the main goal of the preemtive kernel
when we use polling services like that.

TNeoKernel offers a solution: an event group can be connected to other kernel objects, and these objects will
maintain certain flags inside that event group automatically.

So, in case of multiple queues, we can act as follows (assume we have two queues: Q1 and Q2) :

• create event group EG;

• connect EG with flag 1 to Q1;

• connect EG with flag 2 to Q2;

• when task needs to receive a message from either Q1 or Q2, it just waits for the any of flags 1 or 2 in the EG,
this is done in the single call to tn_eventgrp_wait().

• when that event happened, task checks which flag is set, and receive message from the appropriate queue.

Please note that task waiting for the event should not clear the flag manually: this flag is maintained completely by
the queue. If the queue is non-empty, the flag is set. If the queue becomes empty, the flag is cleared.

For the information on system services related to queue, refer to the queue reference.

There is an example project available that demonstrates event group connection technique: examples/queue←↩
_eventgrp_conn. Be sure to examine the readme there.

Definition in file tn_eventgrp.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.6 core/tn_eventgrp.h File Reference 69

Data Structures

• struct TN_EventGrp

Event group.
• struct TN_EGrpTaskWait

EventGrp-specific fields related to waiting task, to be included in struct TN_Task.
• struct TN_EGrpLink

A link to event group: used when event group can be connected to some kernel object, such as queue.

Enumerations

• enum TN_EGrpWaitMode { TN_EVENTGRP_WMODE_OR = (1 << 0), TN_EVENTGRP_WMODE_AND =
(1 << 1) }

Events waiting mode: wait for all flags to be set or just for any of the specified flags to be set.
• enum TN_EGrpOp { TN_EVENTGRP_OP_SET, TN_EVENTGRP_OP_CLEAR, TN_EVENTGRP_OP_TO←↩

GGLE }

Modify operation: set, clear or toggle.

Functions

• enum TN_RCode tn_eventgrp_create (struct TN_EventGrp ∗eventgrp, TN_UWord initial_pattern)

Construct event group.
• enum TN_RCode tn_eventgrp_delete (struct TN_EventGrp ∗eventgrp)

Destruct event group.
• enum TN_RCode tn_eventgrp_wait (struct TN_EventGrp ∗eventgrp, TN_UWord wait_pattern, enum TN_E←↩

GrpWaitMode wait_mode, TN_UWord ∗p_flags_pattern, TN_Timeout timeout)

Wait for specified event(s) in the event group.
• enum TN_RCode tn_eventgrp_wait_polling (struct TN_EventGrp ∗eventgrp, TN_UWord wait_pattern, enum

TN_EGrpWaitMode wait_mode, TN_UWord ∗p_flags_pattern)

The same as tn_eventgrp_wait() with zero timeout.
• enum TN_RCode tn_eventgrp_iwait_polling (struct TN_EventGrp ∗eventgrp, TN_UWord wait_pattern, enum

TN_EGrpWaitMode wait_mode, TN_UWord ∗p_flags_pattern)

The same as tn_eventgrp_wait() with zero timeout, but for using in the ISR.
• enum TN_RCode tn_eventgrp_modify (struct TN_EventGrp ∗eventgrp, enum TN_EGrpOp operation, TN_←↩

UWord pattern)

Modify current events bit pattern in the event group.
• enum TN_RCode tn_eventgrp_imodify (struct TN_EventGrp ∗eventgrp, enum TN_EGrpOp operation, TN_←↩

UWord pattern)

The same as tn_eventgrp_modify(), but for using in the ISR.

17.6.3 Enumeration Type Documentation

17.6.3.1 enum TN_EGrpWaitMode

Events waiting mode: wait for all flags to be set or just for any of the specified flags to be set.

Enumerator

TN_EVENTGRP_WMODE_OR Task waits for any of the event bits from the wait_pattern to be set in the
event group.

TN_EVENTGRP_WMODE_AND Task waits for all of the event bits from the wait_pattern to be set in
the event group.

Definition at line 123 of file tn_eventgrp.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

70 File Documentation

17.6.3.2 enum TN_EGrpOp

Modify operation: set, clear or toggle.

To be used in tn_eventgrp_modify() / tn_eventgrp_imodify() functions.

Enumerator

TN_EVENTGRP_OP_SET Set flags that are set in given pattern argument. Note that this operation can
lead to the context switch, since other high-priority task(s) might wait for the event.

TN_EVENTGRP_OP_CLEAR Clear flags that are set in the given pattern argument. This operation can
not lead to the context switch, since tasks can’t wait for events to be cleared.

TN_EVENTGRP_OP_TOGGLE Toggle flags that are set in the given pattern argument. Note that this
operation can lead to the context switch, since other high-priority task(s) might wait for the event that was
just set (if any).

Definition at line 138 of file tn_eventgrp.h.

17.6.4 Function Documentation

17.6.4.1 enum TN_RCode tn_eventgrp_create (struct TN_EventGrp ∗ eventgrp, TN_UWord initial_pattern)

Construct event group.

id_event field should not contain TN_ID_EVENTGRP, otherwise, TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

eventgrp Pointer to already allocated struct TN_EventGrp
initial_pattern Initial events pattern.

Returns

• TN_RC_OK if event group was successfully created;

• If TN_CHECK_PARAM is non-zero, additional return code is available: TN_RC_WPARAM.

17.6.4.2 enum TN_RCode tn_eventgrp_delete (struct TN_EventGrp ∗ eventgrp)

Destruct event group.

All tasks that wait for the event(s) become runnable with TN_RC_DELETED code returned.

(refer to Legend for details)

Parameters

eventgrp Pointer to event groupt to be deleted.

Returns

• TN_RC_OK if event group was successfully deleted;

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.6 core/tn_eventgrp.h File Reference 71

17.6.4.3 enum TN_RCode tn_eventgrp_wait (struct TN_EventGrp ∗ eventgrp, TN_UWord wait_pattern, enum
TN_EGrpWaitMode wait_mode, TN_UWord ∗ p_flags_pattern, TN_Timeout timeout)

Wait for specified event(s) in the event group.

If the specified event is already active, function returns TN_RC_OK immediately. Otherwise, behavior depends on
timeout value: refer to TN_Timeout.

(refer to Legend for details)

Parameters

eventgrp Pointer to event group to wait events from
wait_pattern Events bit pattern for which task should wait

wait_mode Specifies whether task should wait for all the event bits from wait_pattern to be set, or
for just any of them (see enum TN_EGrpWaitMode)

p_flags_pattern Pointer to the TN_UWord variable in which actual event pattern that caused task to stop
waiting will be stored. May be NULL.

timeout refer to TN_Timeout

Returns

• TN_RC_OK if specified event is active (so the task can check variable pointed to by p_flags_←↩
pattern if it wasn’t NULL).

• TN_RC_WCONTEXT if called from wrong context;

• Other possible return codes depend on timeout value, refer to TN_Timeout

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.6.4.4 enum TN_RCode tn_eventgrp_wait_polling (struct TN_EventGrp ∗ eventgrp, TN_UWord wait_pattern, enum
TN_EGrpWaitMode wait_mode, TN_UWord ∗ p_flags_pattern)

The same as tn_eventgrp_wait() with zero timeout.

(refer to Legend for details)

17.6.4.5 enum TN_RCode tn_eventgrp_iwait_polling (struct TN_EventGrp ∗ eventgrp, TN_UWord wait_pattern, enum
TN_EGrpWaitMode wait_mode, TN_UWord ∗ p_flags_pattern)

The same as tn_eventgrp_wait() with zero timeout, but for using in the ISR.

(refer to Legend for details)

17.6.4.6 enum TN_RCode tn_eventgrp_modify (struct TN_EventGrp ∗ eventgrp, enum TN_EGrpOp operation,
TN_UWord pattern)

Modify current events bit pattern in the event group.

Behavior depends on the given operation: refer to enum TN_EGrpOp

(refer to Legend for details)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

72 File Documentation

Parameters

eventgrp Pointer to event group to modify events in
operation Actual operation to perform: set, clear or toggle. Refer to enum TN_EGrpOp

pattern Events pattern to be applied (depending on operation value)

Returns

• TN_RC_OK on success;

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.6.4.7 enum TN_RCode tn_eventgrp_imodify (struct TN_EventGrp ∗ eventgrp, enum TN_EGrpOp operation,
TN_UWord pattern)

The same as tn_eventgrp_modify(), but for using in the ISR.

(refer to Legend for details)

17.7 core/tn_fmem.h File Reference

17.7.1 Detailed Description

Fixed memory blocks pool.

A fixed-sized memory blocks pool is used for managing fixed-sized memory blocks dynamically. A pool has a
memory area where fixed-sized memory blocks are allocated and the wait queue for acquiring a memory block. If
there are no free memory blocks, a task trying to acquire a memory block will be placed into the wait queue until a
free memory block arrives (another task returns it to the memory pool).

For the useful pattern on how to use fixed memory pool together with queue, refer to the example←↩
: examples/queue. Be sure to examine the readme there.

Definition in file tn_fmem.h.

Data Structures

• struct TN_FMem

Fixed memory blocks pool.

• struct TN_FMemTaskWait

FMem-specific fields related to waiting task, to be included in struct TN_Task.

Macros

• #define TN_FMEM_BUF_DEF(name, item_type, size)

Convenience macro for the definition of buffer for memory pool.

Functions

• enum TN_RCode tn_fmem_create (struct TN_FMem ∗fmem, void ∗start_addr, unsigned int block_size, int
blocks_cnt)

Construct fixed memory blocks pool.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.7 core/tn_fmem.h File Reference 73

• enum TN_RCode tn_fmem_delete (struct TN_FMem ∗fmem)

Destruct fixed memory blocks pool.
• enum TN_RCode tn_fmem_get (struct TN_FMem ∗fmem, void ∗∗p_data, TN_Timeout timeout)

Get memory block from the pool.
• enum TN_RCode tn_fmem_get_polling (struct TN_FMem ∗fmem, void ∗∗p_data)

The same as tn_fmem_get() with zero timeout.
• enum TN_RCode tn_fmem_iget_polling (struct TN_FMem ∗fmem, void ∗∗p_data)

The same as tn_fmem_get() with zero timeout, but for using in the ISR.
• enum TN_RCode tn_fmem_release (struct TN_FMem ∗fmem, void ∗p_data)

Release memory block back to the pool.
• enum TN_RCode tn_fmem_irelease (struct TN_FMem ∗fmem, void ∗p_data)

The same as tn_fmem_get(), but for using in the ISR.

17.7.2 Macro Definition Documentation

17.7.2.1 #define TN_FMEM_BUF_DEF(name, item_type, size)

Value:

TN_UWord name[\
(size) \

* (TN_MAKE_ALIG_SIZE(sizeof(item_type)) / sizeof(TN_UWord)) \
]

Convenience macro for the definition of buffer for memory pool.

See tn_fmem_create() for usage example.

Parameters

name C variable name of the buffer array (this name should be given to the tn_fmem_create()
function as the start_addr argument)

item_type Type of item in the memory pool, like struct MyMemoryItem.
size Number of items in the memory pool.

Definition at line 140 of file tn_fmem.h.

17.7.3 Function Documentation

17.7.3.1 enum TN_RCode tn_fmem_create (struct TN_FMem ∗ fmem, void ∗ start_addr, unsigned int block_size, int
blocks_cnt)

Construct fixed memory blocks pool.

id_fmp field should not contain TN_ID_FSMEMORYPOOL, otherwise, TN_RC_WPARAM is returned.

Note that start_addr and block_size should be a multiple of sizeof(TN_UWord).

For the definition of buffer, convenience macro TN_FMEM_BUF_DEF() was invented.

Typical definition looks as follows:

//-- number of blocks in the pool
#define MY_MEMORY_BUF_SIZE 8

//-- type for memory block
struct MyMemoryItem {

// ... arbitrary fields ...
};

//-- define buffer for memory pool
TN_FMEM_BUF_DEF(my_fmem_buf, struct MyMemoryItem, MY_MEMORY_BUF_SIZE);

//-- define memory pool structure
struct TN_FMem my_fmem;

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

74 File Documentation

And then, construct your my_fmem as follows:

enum TN_RCode rc;
rc = tn_fmem_create(&my_fmem,

my_fmem_buf,
TN_MAKE_ALIG_SIZE(sizeof(struct MyMemoryItem)),
MY_MEMORY_BUF_SIZE);

if (rc != TN_RC_OK){
//-- handle error

}

If given start_addr and/or block_size aren’t aligned properly, TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

fmem pointer to already allocated struct TN_FMem.
start_addr pointer to start of the array; should be aligned properly, see example above
block_size size of memory block; should be a multiple of sizeof(TN_UWord), see example above
blocks_cnt capacity (total number of blocks in the memory pool)

Returns

• TN_RC_OK if memory pool was successfully created;

• If TN_CHECK_PARAM is non-zero, additional return code is available: TN_RC_WPARAM.

See also

TN_MAKE_ALIG_SIZE

17.7.3.2 enum TN_RCode tn_fmem_delete (struct TN_FMem ∗ fmem)

Destruct fixed memory blocks pool.

All tasks that wait for free memory block become runnable with TN_RC_DELETED code returned.

(refer to Legend for details)

Parameters

fmem pointer to memory pool to be deleted

Returns

• TN_RC_OK if memory pool is successfully deleted;

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.7.3.3 enum TN_RCode tn_fmem_get (struct TN_FMem ∗ fmem, void ∗∗ p_data, TN_Timeout timeout)

Get memory block from the pool.

Start address of the memory block is returned through the p_data argument. The content of memory block is
undefined. If there is no free block in the pool, behavior depends on timeout value: refer to TN_Timeout.

(refer to Legend for details)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.7 core/tn_fmem.h File Reference 75

Parameters

fmem Pointer to memory pool
p_data Address of the (void ∗) to which received block address will be saved
timeout Refer to TN_Timeout

Returns

• TN_RC_OK if block was successfully returned through p_data;

• TN_RC_WCONTEXT if called from wrong context;

• Other possible return codes depend on timeout value, refer to TN_Timeout

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.7.3.4 enum TN_RCode tn_fmem_get_polling (struct TN_FMem ∗ fmem, void ∗∗ p_data)

The same as tn_fmem_get() with zero timeout.

(refer to Legend for details)

17.7.3.5 enum TN_RCode tn_fmem_iget_polling (struct TN_FMem ∗ fmem, void ∗∗ p_data)

The same as tn_fmem_get() with zero timeout, but for using in the ISR.

(refer to Legend for details)

17.7.3.6 enum TN_RCode tn_fmem_release (struct TN_FMem ∗ fmem, void ∗ p_data)

Release memory block back to the pool.

The kernel does not check the validity of the membership of given block in the memory pool. If all the memory
blocks in the pool are free already, TN_RC_OVERFLOW is returned.

(refer to Legend for details)

Parameters

fmem Pointer to memory pool.
p_data Address of the memory block to release.

Returns

• TN_RC_OK on success

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.7.3.7 enum TN_RCode tn_fmem_irelease (struct TN_FMem ∗ fmem, void ∗ p_data)

The same as tn_fmem_get(), but for using in the ISR.

(refer to Legend for details)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

76 File Documentation

17.8 core/tn_mutex.h File Reference

17.8.1 Detailed Description

A mutex is an object used to protect shared resource.

There is a lot of confusion about differences between semaphores and mutexes, so, it’s quite recommended to read
small article by Michael Barr: Mutexes and Semaphores Demystified.

Very short:

While mutex is seemingly similar to a semaphore with maximum count of 1 (the so-called binary semaphore), their
usage is very different: the purpose of mutex is to protect shared resource. A locked mutex is "owned" by the task
that locked it, and only the same task may unlock it. This ownership allows to implement algorithms to prevent
priority inversion. So, mutex is a locking mechanism.

Semaphore, on the other hand, is signaling mechanism. It’s quite legal and encouraged for semaphore to be
acquired in the task A, and then signaled from task B or even from ISR. It may be used in situations like "producer
and consumer", etc.

In addition to the article mentioned above, you may want to look at the related question on
stackoverflow.com.

Mutex features in TNeoKernel:

• Recursive locking is supported (if option TN_MUTEX_REC is non-zero);

• Deadlock detection (if option TN_MUTEX_DEADLOCK_DETECT is non-zero);

• Two protocols available to avoid unbounded priority inversion: priority inheritance and priority ceiling.

A discussion about strengths and weaknesses of each protocol as well as priority inversions problem is beyond the
scope of this document.

The priority inheritance protocol solves the priority inversions problem but doesn’t prevents deadlocks, although the
kernel can notify you if a deadlock has occured (see TN_MUTEX_DEADLOCK_DETECT).

The priority ceiling protocol prevents deadlocks and chained blocking but it is slower than the priority inheritance
protocol.

See also

TN_USE_MUTEXES

Definition in file tn_mutex.h.

Data Structures

• struct TN_Mutex

Mutex.

Enumerations

• enum TN_MutexProtocol { TN_MUTEX_PROT_CEILING = 1, TN_MUTEX_PROT_INHERIT = 2 }

Mutex protocol for avoid priority inversion.

Functions

• enum TN_RCode tn_mutex_create (struct TN_Mutex ∗mutex, enum TN_MutexProtocol protocol, int ceil_←↩
priority)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

http://goo.gl/YprPBW
http://goo.gl/ZBReHK
http://goo.gl/ZBReHK

17.8 core/tn_mutex.h File Reference 77

Construct the mutex.

• enum TN_RCode tn_mutex_delete (struct TN_Mutex ∗mutex)

Destruct mutex.

• enum TN_RCode tn_mutex_lock (struct TN_Mutex ∗mutex, TN_Timeout timeout)

Lock mutex.

• enum TN_RCode tn_mutex_lock_polling (struct TN_Mutex ∗mutex)

The same as tn_mutex_lock() with zero timeout.

• enum TN_RCode tn_mutex_unlock (struct TN_Mutex ∗mutex)

Unlock mutex.

17.8.2 Enumeration Type Documentation

17.8.2.1 enum TN_MutexProtocol

Mutex protocol for avoid priority inversion.

Enumerator

TN_MUTEX_PROT_CEILING Mutex uses priority ceiling protocol.

TN_MUTEX_PROT_INHERIT Mutex uses priority inheritance protocol.

Definition at line 109 of file tn_mutex.h.

17.8.3 Function Documentation

17.8.3.1 enum TN_RCode tn_mutex_create (struct TN_Mutex ∗ mutex, enum TN_MutexProtocol protocol, int
ceil_priority)

Construct the mutex.

The field id_mutex should not contain TN_ID_MUTEX, otherwise, TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

mutex Pointer to already allocated struct TN_Mutex
protocol Mutex protocol: priority ceiling or priority inheritance. See enum TN_MutexProtocol.

ceil_priority Used if only protocol is TN_MUTEX_PROT_CEILING: maximum priority of the task that
may lock the mutex.

Returns

• TN_RC_OK if mutex was successfully created;

• If TN_CHECK_PARAM is non-zero, additional return code is available: TN_RC_WPARAM.

17.8.3.2 enum TN_RCode tn_mutex_delete (struct TN_Mutex ∗ mutex)

Destruct mutex.

All tasks that wait for lock the mutex become runnable with TN_RC_DELETED code returned.

(refer to Legend for details)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

78 File Documentation

Parameters

mutex mutex to destruct

Returns

• TN_RC_OK if mutex was successfully destroyed;

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.8.3.3 enum TN_RCode tn_mutex_lock (struct TN_Mutex ∗ mutex, TN_Timeout timeout)

Lock mutex.

• If the mutex is not locked, function immediately locks the mutex and returns TN_RC_OK.

• If the mutex is already locked by the same task, lock count is merely incremented and TN_RC_OK is returned
immediately.

• If the mutex is locked by different task, behavior depends on timeout value: refer to TN_Timeout.

(refer to Legend for details)

Parameters

mutex mutex to lock
timeout refer to TN_Timeout

Returns

• TN_RC_OK if mutex is successfully locked or if lock count was merely incremented (this is possible if
recursive locking is enabled, see TN_MUTEX_REC)

• TN_RC_WCONTEXT if called from wrong context;

• TN_RC_ILLEGAL_USE

– if mutex protocol is TN_MUTEX_PROT_CEILING and calling task’s priority is higher than ceil←↩
_priority given to tn_mutex_create()

– if recursive locking is disabled (see TN_MUTEX_REC) and the mutex is already locked by calling
task

• Other possible return codes depend on timeout value, refer to TN_Timeout

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

See also

TN_MutexProtocol

17.8.3.4 enum TN_RCode tn_mutex_lock_polling (struct TN_Mutex ∗ mutex)

The same as tn_mutex_lock() with zero timeout.

(refer to Legend for details)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.9 core/tn_oldsymbols.h File Reference 79

17.8.3.5 enum TN_RCode tn_mutex_unlock (struct TN_Mutex ∗ mutex)

Unlock mutex.

• If mutex is not locked or locked by different task, TN_RC_ILLEGAL_USE is returned.

• If mutex is already locked by calling task, lock count is decremented. Now, if lock count is zero, mutex
gets unlocked (and if there are task(s) waiting for mutex, the first one from the wait queue locks the mutex).
Otherwise, mutex remains locked with lock count decremented and function returns TN_RC_OK.

(refer to Legend for details)

Returns

• TN_RC_OK if mutex is unlocked of if lock count was merely decremented (this is possible if recursive
locking is enabled, see TN_MUTEX_REC)

• TN_RC_WCONTEXT if called from wrong context;

• TN_RC_ILLEGAL_USE if mutex is either not locked or locked by different task

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.9 core/tn_oldsymbols.h File Reference

17.9.1 Detailed Description

Compatibility layer for old projects that use old TNKernel names; usage of them in new projects is discouraged.

If you’re porting your existing application written for TNKernel, it might be useful though.

Included automatially if the option TN_OLD_TNKERNEL_NAMES is set.

Definition in file tn_oldsymbols.h.

Macros

• #define _CDLL_QUEUE TN_ListItem

old TNKernel struct name of TN_ListItem

• #define _TN_MUTEX TN_Mutex

old TNKernel struct name of TN_Mutex

• #define _TN_DQUE TN_DQueue

old TNKernel struct name of TN_DQueue

• #define _TN_TCB TN_Task

old TNKernel struct name of TN_Task

• #define _TN_FMP TN_FMem

old TNKernel struct name of TN_FMem

• #define _TN_SEM TN_Sem

old TNKernel struct name of TN_Sem

• #define MAKE_ALIG TN_MAKE_ALIG

old TNKernel name of TN_MAKE_ALIG macro

• #define TSK_STATE_RUNNABLE TN_TASK_STATE_RUNNABLE

old TNKernel name of TN_TASK_STATE_RUNNABLE

• #define TSK_STATE_WAIT TN_TASK_STATE_WAIT

old TNKernel name of TN_TASK_STATE_WAIT

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

80 File Documentation

• #define TSK_STATE_SUSPEND TN_TASK_STATE_SUSPEND

old TNKernel name of TN_TASK_STATE_SUSPEND

• #define TSK_STATE_WAITSUSP TN_TASK_STATE_WAITSUSP

old TNKernel name of TN_TASK_STATE_WAITSUSP

• #define TSK_STATE_DORMANT TN_TASK_STATE_DORMANT

old TNKernel name of TN_TASK_STATE_DORMANT

• #define TN_TASK_START_ON_CREATION TN_TASK_CREATE_OPT_START

old TNKernel name of TN_TASK_CREATE_OPT_START

• #define TN_EXIT_AND_DELETE_TASK TN_TASK_EXIT_OPT_DELETE

old TNKernel name of TN_TASK_EXIT_OPT_DELETE

• #define TN_EVENT_WCOND_AND TN_EVENTGRP_WMODE_AND

old TNKernel name of TN_EVENTGRP_WMODE_AND

• #define TN_EVENT_WCOND_OR TN_EVENTGRP_WMODE_OR

old TNKernel name of TN_EVENTGRP_WMODE_OR

• #define TSK_WAIT_REASON_NONE TN_WAIT_REASON_NONE

old TNKernel name of TN_WAIT_REASON_NONE

• #define TSK_WAIT_REASON_SLEEP TN_WAIT_REASON_SLEEP

old TNKernel name of TN_WAIT_REASON_SLEEP

• #define TSK_WAIT_REASON_SEM TN_WAIT_REASON_SEM

old TNKernel name of TN_WAIT_REASON_SEM

• #define TSK_WAIT_REASON_EVENT TN_WAIT_REASON_EVENT

old TNKernel name of TN_WAIT_REASON_EVENT

• #define TSK_WAIT_REASON_DQUE_WSEND TN_WAIT_REASON_DQUE_WSEND

old TNKernel name of TN_WAIT_REASON_DQUE_WSEND

• #define TSK_WAIT_REASON_DQUE_WRECEIVE TN_WAIT_REASON_DQUE_WRECEIVE

old TNKernel name of TN_WAIT_REASON_DQUE_WRECEIVE

• #define TSK_WAIT_REASON_MUTEX_C TN_WAIT_REASON_MUTEX_C

old TNKernel name of TN_WAIT_REASON_MUTEX_C

• #define TSK_WAIT_REASON_MUTEX_I TN_WAIT_REASON_MUTEX_I

old TNKernel name of TN_WAIT_REASON_MUTEX_I

• #define TSK_WAIT_REASON_WFIXMEM TN_WAIT_REASON_WFIXMEM

old TNKernel name of TN_WAIT_REASON_WFIXMEM

• #define TERR_NO_ERR TN_RC_OK

old TNKernel name of TN_RC_OK

• #define TERR_OVERFLOW TN_RC_OVERFLOW

old TNKernel name of TN_RC_OVERFLOW

• #define TERR_WCONTEXT TN_RC_WCONTEXT

old TNKernel name of TN_RC_WCONTEXT

• #define TERR_WSTATE TN_RC_WSTATE

old TNKernel name of TN_RC_WSTATE

• #define TERR_TIMEOUT TN_RC_TIMEOUT

old TNKernel name of TN_RC_TIMEOUT

• #define TERR_WRONG_PARAM TN_RC_WPARAM

old TNKernel name of TN_RC_WPARAM

• #define TERR_ILUSE TN_RC_ILLEGAL_USE

old TNKernel name of TN_RC_ILLEGAL_USE

• #define TERR_NOEXS TN_RC_INVALID_OBJ

old TNKernel name of TN_RC_INVALID_OBJ

• #define TERR_DLT TN_RC_DELETED

old TNKernel name of TN_RC_DELETED

• #define TERR_FORCED TN_RC_FORCED

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.9 core/tn_oldsymbols.h File Reference 81

old TNKernel name of TN_RC_FORCED

• #define TERR_INTERNAL TN_RC_INTERNAL

old TNKernel name of TN_RC_INTERNAL

• #define TN_MUTEX_ATTR_CEILING TN_MUTEX_PROT_CEILING

old TNKernel name of TN_MUTEX_PROT_CEILING

• #define TN_MUTEX_ATTR_INHERIT TN_MUTEX_PROT_INHERIT

old TNKernel name of TN_MUTEX_PROT_INHERIT

• #define tn_sem_polling tn_sem_acquire_polling

old TNKernel name of tn_sem_acquire_polling

• #define tn_sem_ipolling tn_sem_iacquire_polling

old TNKernel name of tn_sem_iacquire_polling

• #define tn_sem_acquire tn_sem_wait

old name of tn_sem_wait

• #define tn_sem_acquire_polling tn_sem_wait_polling

old name of tn_sem_wait_polling

• #define tn_sem_iacquire_polling tn_sem_iwait_polling

old name of tn_sem_iwait_polling

• #define tn_fmem_get_ipolling tn_fmem_iget_polling

old TNKernel name of tn_fmem_iget_polling

• #define tn_queue_ireceive tn_queue_ireceive_polling

old TNKernel name of tn_queue_ireceive_polling

• #define tn_start_system tn_sys_start

old TNKernel name of tn_sys_start

• #define tn_sys_tslice_ticks tn_sys_tslice_set

old TNKernel name of tn_sys_tslice_set

• #define align_attr_start TN_ARCH_STK_ATTR_BEFORE

old TNKernel name of TN_ARCH_STK_ATTR_BEFORE

• #define align_attr_end TN_ARCH_STK_ATTR_AFTER

old TNKernel name of TN_ARCH_STK_ATTR_AFTER

• #define tn_cpu_int_disable tn_arch_int_dis

old TNKernel name of tn_arch_int_dis

• #define tn_cpu_int_enable tn_arch_int_en

old TNKernel name of tn_arch_int_en

• #define tn_cpu_save_sr tn_arch_sr_save_int_dis

old TNKernel name of tn_arch_sr_save_int_dis

• #define tn_cpu_restore_sr tn_arch_sr_restore

old TNKernel name of tn_arch_sr_restore

• #define tn_disable_interrupt TN_INT_DIS_SAVE

old TNKernel name of TN_INT_DIS_SAVE

• #define tn_enable_interrupt TN_INT_RESTORE

old TNKernel name of TN_INT_RESTORE

• #define tn_idisable_interrupt TN_INT_IDIS_SAVE

old TNKernel name of TN_INT_IDIS_SAVE

• #define tn_ienable_interrupt TN_INT_IRESTORE

old TNKernel name of TN_INT_IRESTORE

• #define tn_chk_irq_disabled TN_IS_INT_DISABLED

old TNKernel name of TN_IS_INT_DISABLED

• #define TN_NUM_PRIORITY TN_PRIORITIES_CNT

old TNKernel name of TN_PRIORITIES_CNT

• #define _TN_BITS_IN_INT TN_INT_WIDTH

old TNKernel name of TN_INT_WIDTH

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

82 File Documentation

• #define TN_ALIG sizeof(TN_UWord)

old TNKernel name for sizeof(TN_UWord)
• #define TN_TASK_STACK_DEF TN_STACK_ARR_DEF

old name for TN_STACK_ARR_DEF

Typedefs

• typedef struct TN_ListItem CDLL_QUEUE

old TNKernel name of TN_ListItem
• typedef struct TN_Mutex TN_MUTEX

old TNKernel name of TN_Mutex
• typedef struct TN_DQueue TN_DQUE

old TNKernel name of TN_DQueue
• typedef struct TN_Task TN_TCB

old TNKernel name of TN_Task
• typedef struct TN_FMem TN_FMP

old TNKernel name of TN_FMem
• typedef struct TN_Sem TN_SEM

old TNKernel name of TN_Sem

17.9.2 Macro Definition Documentation

17.9.2.1 #define MAKE_ALIG TN_MAKE_ALIG

old TNKernel name of TN_MAKE_ALIG macro

Attention

it is recommended to use TN_MAKE_ALIG_SIZE macro instead of this one, in order to avoid confusion
caused by various TNKernel ports: refer to the section Macro MAKE_ALIG() for details.

Definition at line 140 of file tn_oldsymbols.h.

17.10 core/tn_sem.h File Reference

17.10.1 Detailed Description

A semaphore: an object to provide signaling mechanism.

There is a lot of confusion about differences between semaphores and mutexes, so, it’s quite recommended to read
small article by Michael Barr: Mutexes and Semaphores Demystified.

Very short:

While mutex is seemingly similar to a semaphore with maximum count of 1 (the so-called binary semaphore), their
usage is very different: the purpose of mutex is to protect shared resource. A locked mutex is "owned" by the task
that locked it, and only the same task may unlock it. This ownership allows to implement algorithms to prevent
priority inversion. So, mutex is a locking mechanism.

Semaphore, on the other hand, is signaling mechanism. It’s quite legal and encouraged for semaphore to be waited
for in the task A, and then signaled from task B or even from ISR. It may be used in situations like "producer and
consumer", etc.

In addition to the article mentioned above, you may want to look at the related question on
stackoverflow.com.

Definition in file tn_sem.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

http://goo.gl/YprPBW
http://goo.gl/ZBReHK
http://goo.gl/ZBReHK

17.10 core/tn_sem.h File Reference 83

Data Structures

• struct TN_Sem

Semaphore.

Functions

• enum TN_RCode tn_sem_create (struct TN_Sem ∗sem, int start_count, int max_count)

Construct the semaphore.

• enum TN_RCode tn_sem_delete (struct TN_Sem ∗sem)

Destruct the semaphore.

• enum TN_RCode tn_sem_signal (struct TN_Sem ∗sem)

Signal the semaphore.

• enum TN_RCode tn_sem_isignal (struct TN_Sem ∗sem)

The same as tn_sem_signal() but for using in the ISR.

• enum TN_RCode tn_sem_wait (struct TN_Sem ∗sem, TN_Timeout timeout)

Wait for the semaphore.

• enum TN_RCode tn_sem_wait_polling (struct TN_Sem ∗sem)

The same as tn_sem_wait() with zero timeout.

• enum TN_RCode tn_sem_iwait_polling (struct TN_Sem ∗sem)

The same as tn_sem_wait() with zero timeout, but for using in the ISR.

17.10.2 Function Documentation

17.10.2.1 enum TN_RCode tn_sem_create (struct TN_Sem ∗ sem, int start_count, int max_count)

Construct the semaphore.

id_sem field should not contain TN_ID_SEMAPHORE, otherwise, TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

sem Pointer to already allocated struct TN_Sem
start_count Initial counter value, typically it is equal to max_count
max_count Maximum counter value.

Returns

• TN_RC_OK if semaphore was successfully created;

• If TN_CHECK_PARAM is non-zero, additional return code is available: TN_RC_WPARAM.

17.10.2.2 enum TN_RCode tn_sem_delete (struct TN_Sem ∗ sem)

Destruct the semaphore.

All tasks that wait for the semaphore become runnable with TN_RC_DELETED code returned.

(refer to Legend for details)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

84 File Documentation

Parameters

sem semaphore to destruct

Returns

• TN_RC_OK if semaphore was successfully deleted;

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.10.2.3 enum TN_RCode tn_sem_signal (struct TN_Sem ∗ sem)

Signal the semaphore.

If current semaphore counter (count) is less than max_count, counter is incremented by one, and first task (if
any) that waits for the semaphore becomes runnable with TN_RC_OK returned from tn_sem_wait().

if semaphore counter is already has its max value, no action performed and TN_RC_OVERFLOW is returned

(refer to Legend for details)

Parameters

sem semaphore to signal

Returns

• TN_RC_OK if successful

• TN_RC_WCONTEXT if called from wrong context;

• TN_RC_OVERFLOW if count is already at maximum value (max_count)

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.10.2.4 enum TN_RCode tn_sem_isignal (struct TN_Sem ∗ sem)

The same as tn_sem_signal() but for using in the ISR.

(refer to Legend for details)

17.10.2.5 enum TN_RCode tn_sem_wait (struct TN_Sem ∗ sem, TN_Timeout timeout)

Wait for the semaphore.

If the current semaphore counter (count) is non-zero, it is decremented and TN_RC_OK is returned. Otherwise,
behavior depends on timeout value: task might switch to WAIT state until someone signaled the semaphore or
until the timeout expired. refer to TN_Timeout.

(refer to Legend for details)

Parameters

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.11 core/tn_sys.h File Reference 85

sem semaphore to wait for
timeout refer to TN_Timeout

Returns

• TN_RC_OK if waiting was successfull

• Other possible return codes depend on timeout value, refer to TN_Timeout

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.10.2.6 enum TN_RCode tn_sem_wait_polling (struct TN_Sem ∗ sem)

The same as tn_sem_wait() with zero timeout.

(refer to Legend for details)

17.10.2.7 enum TN_RCode tn_sem_iwait_polling (struct TN_Sem ∗ sem)

The same as tn_sem_wait() with zero timeout, but for using in the ISR.

(refer to Legend for details)

17.11 core/tn_sys.h File Reference

17.11.1 Detailed Description

Kernel system routines: system start, tick processing, time slice managing.

Definition in file tn_sys.h.

Macros

• #define TN_STACK_ARR_DEF(name, size)

Convenience macro for the definition of stack array.

• #define TN_NO_TIME_SLICE 0

Value to pass to tn_sys_tslice_set() to turn round-robin off.

• #define TN_MAX_TIME_SLICE 0xFFFE

Max value of time slice.

Typedefs

• typedef void(TN_CBUserTaskCreate)(void)

User-provided callback function that is called directly from tn_sys_start() as a part of system startup routine;
it should merely create at least one (and typically just one) user’s task, which should perform all the rest application
initialization.

• typedef void(TN_CBIdle)(void)

User-provided callback function that is called repeatedly from the idle task loop.

• typedef void(TN_CBDeadlock)(BOOL active, struct TN_Mutex ∗mutex, struct TN_Task ∗task)

User-provided callback function that is called whenever deadlock becomes active or inactive.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

86 File Documentation

Enumerations

• enum TN_StateFlag { TN_STATE_FLAG__SYS_RUNNING = (1 << 0), TN_STATE_FLAG__DEADLOCK =
(1 << 1) }

System state flags.

• enum TN_Context { TN_CONTEXT_NONE, TN_CONTEXT_TASK, TN_CONTEXT_ISR }

System context.

Functions

• void tn_sys_start (TN_UWord ∗idle_task_stack, unsigned int idle_task_stack_size, TN_UWord ∗int_stack,
unsigned int int_stack_size, TN_CBUserTaskCreate ∗cb_user_task_create, TN_CBIdle ∗cb_idle)

Initial TNeoKernel system start function, never returns.

• enum TN_RCode tn_tick_int_processing (void)

Process system tick; should be called periodically, typically from some kind of timer ISR.

• enum TN_RCode tn_sys_tslice_set (int priority, int ticks)

Set time slice ticks value for specified priority (see Round-robin scheduling).

• unsigned int tn_sys_time_get (void)

Get current system ticks count.

• void tn_callback_deadlock_set (TN_CBDeadlock ∗cb)

Set callback function that should be called whenever deadlock occurs or becomes inactive (say, if one of tasks involved
in the deadlock was released from wait because of timeout)

• enum TN_StateFlag tn_sys_state_flags_get (void)

Returns current system state flags.

• enum TN_Context tn_sys_context_get (void)

Returns system context: task or ISR.

• static BOOL tn_is_task_context (void)

Returns whether current system context is TN_CONTEXT_TASK

• static BOOL tn_is_isr_context (void)

Returns whether current system context is TN_CONTEXT_ISR

• struct TN_Task ∗ tn_cur_task_get (void)

Returns pointer to the currently running task.

• TN_TaskBody ∗ tn_cur_task_body_get (void)

Returns pointer to the body function of the currently running task.

17.11.2 Macro Definition Documentation

17.11.2.1 #define TN_STACK_ARR_DEF(name, size)

Value:

TN_ARCH_STK_ATTR_BEFORE \
TN_UWord name[(size)] \
TN_ARCH_STK_ATTR_AFTER

Convenience macro for the definition of stack array.

See tn_task_create() for the usage example.

Parameters

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.11 core/tn_sys.h File Reference 87

name C variable name of the array
size size of the stack array in words (TN_UWord), not in bytes.

Definition at line 85 of file tn_sys.h.

17.11.3 Typedef Documentation

17.11.3.1 typedef void(TN_CBUserTaskCreate)(void)

User-provided callback function that is called directly from tn_sys_start() as a part of system startup routine;
it should merely create at least one (and typically just one) user’s task, which should perform all the rest application
initialization.

When TN_CBUserTaskCreate() returned, the kernel performs first context switch to the task with highest
priority. If there are several tasks with highest priority, context is switched to the first created one.

Refer to the section Starting the kernel for details about system startup process on the whole.

Note: Although you’re able to create more than one task here, it’s usually not so good idea, because many things
typically should be done at startup before tasks can go on with their job: we need to initialize various on-board
peripherals (displays, flash memory chips, or whatever) as well as initialize software modules used by application.
So, if many tasks are created here, you have to provide some synchronization object so that tasks will wait until all
the initialization is done.

It’s usually easier to maintain if we create just one task here, which firstly performs all the necessary initialization,
then creates the rest of your tasks, and eventually gets to its primary job (the job for which task was created at all).
For the usage example, refer to the page Starting the kernel.

Attention

• The only system service is allowed to call in this function is tn_task_create().

See also

tn_sys_start()

Definition at line 162 of file tn_sys.h.

17.11.3.2 typedef void(TN_CBIdle)(void)

User-provided callback function that is called repeatedly from the idle task loop.

Make sure that idle task has enough stack space to call this function.

Attention

• It is illegal to sleep here, because idle task (from which this function is called) should always be runnable,
by design. If TN_DEBUG option is set, then sleeping in idle task is checked, so if you try to sleep here,
_TN_FATAL_ERROR() macro will be called.

See also

tn_sys_start()

Definition at line 177 of file tn_sys.h.

17.11.3.3 typedef void(TN_CBDeadlock)(BOOL active, struct TN_Mutex ∗mutex, struct TN_Task ∗task)

User-provided callback function that is called whenever deadlock becomes active or inactive.

Note: this feature works if only TN_MUTEX_DEADLOCK_DETECT is non-zero.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

88 File Documentation

Parameters

active if TRUE, deadlock becomes active, otherwise it becomes inactive (say, if task stopped waiting
for mutex because of timeout)

mutex mutex that is involved in deadlock. You may find out other mutexes involved by means of
mutex->deadlock_list.

task task that is involved in deadlock. You may find out other tasks involved by means of
task->deadlock_list.

Definition at line 192 of file tn_sys.h.

17.11.4 Enumeration Type Documentation

17.11.4.1 enum TN_StateFlag

System state flags.

Enumerator

TN_STATE_FLAG__SYS_RUNNING system is running

TN_STATE_FLAG__DEADLOCK deadlock is active Note: this feature works if only TN_MUTEX_DEADLO←↩
CK_DETECT is non-zero.
See also

TN_MUTEX_DEADLOCK_DETECT

Definition at line 100 of file tn_sys.h.

17.11.4.2 enum TN_Context

System context.

See also

tn_sys_context_get()

Enumerator

TN_CONTEXT_NONE None: this code is possible if only system is not running (flag (TN_STATE_FLAG_←↩
_SYS_RUNNING is not set in the tn_sys_state))

TN_CONTEXT_TASK Task context.

TN_CONTEXT_ISR ISR context.

Definition at line 116 of file tn_sys.h.

17.11.5 Function Documentation

17.11.5.1 void tn_sys_start (TN_UWord ∗ idle_task_stack, unsigned int idle_task_stack_size, TN_UWord ∗ int_stack,
unsigned int int_stack_size, TN_CBUserTaskCreate ∗ cb_user_task_create, TN_CBIdle ∗ cb_idle)

Initial TNeoKernel system start function, never returns.

Typically called from main().

Refer to the Starting the kernel section for the usage example and additional comments.

(refer to Legend for details)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.11 core/tn_sys.h File Reference 89

Parameters

idle_task_stack Pointer to array for idle task stack. User must either use the macro TN_STACK_ARR_DE←↩
F() for the definition of stack array, or allocate it manually as an array of TN_UWord with
TN_ARCH_STK_ATTR_BEFORE and TN_ARCH_STK_ATTR_AFTER macros.

idle_task_←↩
stack_size

Size of idle task stack, in words (TN_UWord)

int_stack Pointer to array for interrupt stack. User must either use the macro TN_STACK_ARR_DE←↩
F() for the definition of stack array, or allocate it manually as an array of TN_UWord with
TN_ARCH_STK_ATTR_BEFORE and TN_ARCH_STK_ATTR_AFTER macros.

int_stack_size Size of interrupt stack, in words (TN_UWord)
cb_user_task_←↩

create
Callback function that should create initial user’s task, see TN_CBUserTaskCreate for
details.

cb_idle Callback function repeatedly called from idle task, see TN_CBIdle for details.

17.11.5.2 enum TN_RCode tn_tick_int_processing (void)

Process system tick; should be called periodically, typically from some kind of timer ISR.

The period of this timer is determined by user (typically 1 ms, but user is free to set different value)

Among other things, expired timers are fired from this function.

For further information, refer to Quick guide.

(refer to Legend for details)

Returns

• TN_RC_OK on success;

• TN_RC_WCONTEXT if called from wrong context.

17.11.5.3 enum TN_RCode tn_sys_tslice_set (int priority, int ticks)

Set time slice ticks value for specified priority (see Round-robin scheduling).

(refer to Legend for details)

Parameters

priority Priority of tasks for which time slice value should be set
ticks Time slice value, in ticks. Set to TN_NO_TIME_SLICE for no round-robin scheduling for

given priority (it’s default value). Value can’t be higher than TN_MAX_TIME_SLICE.

Returns

• TN_RC_OK on success;

• TN_RC_WCONTEXT if called from wrong context;

• TN_RC_WPARAM if given priority or ticks are invalid.

17.11.5.4 unsigned int tn_sys_time_get (void)

Get current system ticks count.

(refer to Legend for details)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

90 File Documentation

Returns

Current system ticks count.

17.11.5.5 void tn_callback_deadlock_set (TN_CBDeadlock ∗ cb)

Set callback function that should be called whenever deadlock occurs or becomes inactive (say, if one of tasks
involved in the deadlock was released from wait because of timeout)

(refer to Legend for details)

Note: this function should be called from main(), before tn_sys_start().

Parameters

cb Pointer to user-provided callback function.

See also

TN_MUTEX_DEADLOCK_DETECT
TN_CBDeadlock for callback function prototype

17.11.5.6 enum TN_StateFlag tn_sys_state_flags_get (void)

Returns current system state flags.

(refer to Legend for details)

17.11.5.7 enum TN_Context tn_sys_context_get (void)

Returns system context: task or ISR.

(refer to Legend for details)

See also

enum TN_Context

17.11.5.8 static BOOL tn_is_task_context (void) [inline], [static]

Returns whether current system context is TN_CONTEXT_TASK

(refer to Legend for details)

Returns

TRUE if current system context is TN_CONTEXT_TASK, FALSE otherwise.

See also

tn_sys_context_get()
enum TN_Context

Definition at line 371 of file tn_sys.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.12 core/tn_tasks.h File Reference 91

17.11.5.9 static BOOL tn_is_isr_context (void) [inline], [static]

Returns whether current system context is TN_CONTEXT_ISR

(refer to Legend for details)

Returns

TRUE if current system context is TN_CONTEXT_ISR, FALSE otherwise.

See also

tn_sys_context_get()
enum TN_Context

Definition at line 390 of file tn_sys.h.

17.11.5.10 struct TN_Task∗ tn_cur_task_get (void)

Returns pointer to the currently running task.

(refer to Legend for details)

17.11.5.11 TN_TaskBody∗ tn_cur_task_body_get (void)

Returns pointer to the body function of the currently running task.

(refer to Legend for details)

17.12 core/tn_tasks.h File Reference

17.12.1 Detailed Description

Various task services: create, sleep, wake up, terminate, etc.

Definition in file tn_tasks.h.

Data Structures

• struct TN_Task

Task.

Enumerations

• enum TN_TaskState {
TN_TASK_STATE_NONE = 0, TN_TASK_STATE_RUNNABLE = (1 << 0), TN_TASK_STATE_WAIT = (1
<< 1), TN_TASK_STATE_SUSPEND = (1 << 2),
TN_TASK_STATE_WAITSUSP = (TN_TASK_STATE_WAIT | TN_TASK_STATE_SUSPEND), TN_TASK←↩
_STATE_DORMANT = (1 << 3) }

Task state.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

92 File Documentation

• enum TN_WaitReason {
TN_WAIT_REASON_NONE, TN_WAIT_REASON_SLEEP, TN_WAIT_REASON_SEM, TN_WAIT_REAS←↩
ON_EVENT,
TN_WAIT_REASON_DQUE_WSEND, TN_WAIT_REASON_DQUE_WRECEIVE, TN_WAIT_REASON_M←↩
UTEX_C, TN_WAIT_REASON_MUTEX_I,
TN_WAIT_REASON_WFIXMEM }

Task wait reason.

• enum TN_TaskCreateOpt { TN_TASK_CREATE_OPT_START = (1 << 0), TN_TASK_CREATE_OPT_IDLE
= (1 << 1) }

Options for tn_task_create()

• enum TN_TaskExitOpt { TN_TASK_EXIT_OPT_DELETE = (1 << 0) }

Options for tn_task_exit()

Functions

• enum TN_RCode tn_task_create (struct TN_Task ∗task, TN_TaskBody ∗task_func, int priority, TN_UWord
∗task_stack_low_addr, int task_stack_size, void ∗param, enum TN_TaskCreateOpt opts)

Construct task and probably start it (depends on options, see below).

• enum TN_RCode tn_task_suspend (struct TN_Task ∗task)

If the task is RUNNABLE, it is moved to the SUSPEND state.

• enum TN_RCode tn_task_resume (struct TN_Task ∗task)

Release task from SUSPEND state.

• enum TN_RCode tn_task_sleep (TN_Timeout timeout)

Put current task to sleep for at most timeout ticks.

• enum TN_RCode tn_task_wakeup (struct TN_Task ∗task)

Wake up task from sleep.

• enum TN_RCode tn_task_iwakeup (struct TN_Task ∗task)

The same as tn_task_wakeup() but for using in the ISR.

• enum TN_RCode tn_task_activate (struct TN_Task ∗task)

Activate task that is in DORMANT state, that is, it was either just created by tn_task_create() without TN_T←↩
ASK_CREATE_OPT_START option, or terminated.

• enum TN_RCode tn_task_iactivate (struct TN_Task ∗task)

The same as tn_task_activate() but for using in the ISR.

• enum TN_RCode tn_task_release_wait (struct TN_Task ∗task)

Release task from WAIT state, independently of the reason of waiting.

• enum TN_RCode tn_task_irelease_wait (struct TN_Task ∗task)

The same as tn_task_release_wait() but for using in the ISR.

• void tn_task_exit (enum TN_TaskExitOpt opts)

This function terminates the currently running task.

• enum TN_RCode tn_task_terminate (struct TN_Task ∗task)

This function is similar to tn_task_exit() but it terminates any task other than currently running one.

• enum TN_RCode tn_task_delete (struct TN_Task ∗task)

This function deletes the task specified by the task.

• enum TN_RCode tn_task_state_get (struct TN_Task ∗task, enum TN_TaskState ∗p_state)

Get current state of the task; note that returned state is a bitmask, that is, states could be combined with each other.

• enum TN_RCode tn_task_change_priority (struct TN_Task ∗task, int new_priority)

Set new priority for task.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.12 core/tn_tasks.h File Reference 93

17.12.2 Enumeration Type Documentation

17.12.2.1 enum TN_TaskState

Task state.

Enumerator

TN_TASK_STATE_NONE This state should never be publicly available. It may be stored in task_state only
temporarily, while some system service is in progress.

TN_TASK_STATE_RUNNABLE Task is ready to run (it doesn’t mean that it is running at the moment)

TN_TASK_STATE_WAIT Task is waiting. The reason of waiting can be obtained from task_wait_←↩
reason field of the struct TN_Task.

See also

enum TN_WaitReason

TN_TASK_STATE_SUSPEND Task is suspended (by some other task)

TN_TASK_STATE_WAITSUSP Task was previously waiting, and after this it was suspended.

TN_TASK_STATE_DORMANT Task isn’t yet activated or it was terminated by tn_task_terminate().

Definition at line 73 of file tn_tasks.h.

17.12.2.2 enum TN_WaitReason

Task wait reason.

Enumerator

TN_WAIT_REASON_NONE task isn’t waiting for anything

TN_WAIT_REASON_SLEEP task has called tn_task_sleep()

TN_WAIT_REASON_SEM task waits to acquire a semaphore

See also

tn_sem.h

TN_WAIT_REASON_EVENT task waits for some event in the event group to be set

See also

tn_eventgrp.h

TN_WAIT_REASON_DQUE_WSEND task wants to put some data to the data queue, and there’s no space
in the queue.

See also

tn_dqueue.h

TN_WAIT_REASON_DQUE_WRECEIVE task wants to receive some data to the data queue, and there’s no
data in the queue

See also

tn_dqueue.h

TN_WAIT_REASON_MUTEX_C task wants to lock a mutex with priority ceiling

See also

tn_mutex.h

TN_WAIT_REASON_MUTEX_I task wants to lock a mutex with priority inheritance

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

94 File Documentation

See also

tn_mutex.h

TN_WAIT_REASON_WFIXMEM task wants to get memory block from memory pool, and there’s no free
memory blocks
See also

tn_fmem.h

Definition at line 102 of file tn_tasks.h.

17.12.2.3 enum TN_TaskCreateOpt

Options for tn_task_create()

Enumerator

TN_TASK_CREATE_OPT_START whether task should be activated right after it is created. If this flag is not
set, user must activate task manually by calling tn_task_activate().

TN_TASK_CREATE_OPT_IDLE for internal kernel usage only: this option must be provided when creating
idle task

Definition at line 145 of file tn_tasks.h.

17.12.2.4 enum TN_TaskExitOpt

Options for tn_task_exit()

Enumerator

TN_TASK_EXIT_OPT_DELETE whether task should be deleted right after it is exited. If this flag is not set,
user must either delete it manually by calling tn_task_delete() or re-activate it by calling tn_←↩
task_activate().

Definition at line 160 of file tn_tasks.h.

17.12.3 Function Documentation

17.12.3.1 enum TN_RCode tn_task_create (struct TN_Task ∗ task, TN_TaskBody ∗ task_func, int priority, TN_UWord
∗ task_stack_low_addr, int task_stack_size, void ∗ param, enum TN_TaskCreateOpt opts)

Construct task and probably start it (depends on options, see below).

id_task member should not contain TN_ID_TASK, otherwise, TN_RC_WPARAM is returned.

Usage example:

#define MY_TASK_STACK_SIZE (TN_MIN_STACK_SIZE + 200)
#define MY_TASK_PRIORITY 5

struct TN_Task my_task;

//-- define stack array, we use convenience macro TN_STACK_ARR_DEF()
// for that
TN_STACK_ARR_DEF(my_task_stack, MY_TASK_STACK_SIZE);

void my_task_body(void *param)
{

//-- an endless loop
for (;;){

tn_task_sleep(1);

//-- probably do something useful
}

}

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.12 core/tn_tasks.h File Reference 95

And then, somewhere from other task or from the callback TN_CBUserTaskCreate given to tn_sys_←↩
start() :

enum TN_RCode rc = tn_task_create(
&my_task,
my_task_body,
MY_TASK_PRIORITY,
my_task_stack,
MY_TASK_STACK_SIZE,
NULL, //-- parameter isn’t used
TN_TASK_CREATE_OPT_START //-- start task on creation
);

if (rc != TN_RC_OK){
//-- handle error

}

(refer to Legend for details)

Parameters

task Ready-allocated struct TN_Task structure. id_task member should not contain T←↩
N_ID_TASK, otherwise TN_RC_WPARAM is returned.

task_func Pointer to task body function.
priority Priority for new task. NOTE: the lower value, the higher priority. Must be > 0 and < (TN_←↩

PRIORITIES_CNT - 1).
task_stack_←↩

low_addr
Pointer to the stack for task. User must either use the macro TN_STACK_ARR_DEF() for
the definition of stack array, or allocate it manually as an array of TN_UWord with TN_AR←↩
CH_STK_ATTR_BEFORE and TN_ARCH_STK_ATTR_AFTER macros.

task_stack_size Size of task stack array, in words (TN_UWord), not in bytes.
param Parameter that is passed to task_func.

opts Options for task creation, refer to enum TN_TaskCreateOpt

Returns

• TN_RC_OK on success;

• TN_RC_WCONTEXT if called from wrong context;

• TN_RC_WPARAM if wrong params were given;

See also

TN_ARCH_STK_ATTR_BEFORE
TN_ARCH_STK_ATTR_AFTER

17.12.3.2 enum TN_RCode tn_task_suspend (struct TN_Task ∗ task)

If the task is RUNNABLE, it is moved to the SUSPEND state.

If the task is in the WAIT state, it is moved to the WAIT+SUSPEND state. (waiting + suspended)

(refer to Legend for details)

Parameters

task Task to suspend

Returns

• TN_RC_OK on success;

• TN_RC_WCONTEXT if called from wrong context;

• TN_RC_WSTATE if task is already suspended or dormant;

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

96 File Documentation

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

See also

enum TN_TaskState

17.12.3.3 enum TN_RCode tn_task_resume (struct TN_Task ∗ task)

Release task from SUSPEND state.

If the given task is in the SUSPEND state, it is moved to RUNNABLE state; afterwards it has the lowest precedence
among runnable tasks with the same priority. If the task is in WAIT+SUSPEND state, it is moved to WAIT state.

(refer to Legend for details)

Parameters

task Task to release from suspended state

Returns

• TN_RC_OK on success;

• TN_RC_WCONTEXT if called from wrong context;

• TN_RC_WSTATE if task is not suspended;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

See also

enum TN_TaskState

17.12.3.4 enum TN_RCode tn_task_sleep (TN_Timeout timeout)

Put current task to sleep for at most timeout ticks.

When the timeout expires and the task was not suspended during the sleep, it is switched to runnable state. If the
timeout value is TN_WAIT_INFINITE and the task was not suspended during the sleep, the task will sleep until
another function call (like tn_task_wakeup() or similar) will make it runnable.

(refer to Legend for details)

Parameters

timeout Refer to TN_Timeout

Returns

• TN_RC_TIMEOUT if task has slept specified timeout;

• TN_RC_OK if task was woken up from other task by tn_task_wakeup()

• TN_RC_FORCED if task was released from wait forcibly by tn_task_release_wait()

• TN_RC_WCONTEXT if called from wrong context

See also

TN_Timeout

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.12 core/tn_tasks.h File Reference 97

17.12.3.5 enum TN_RCode tn_task_wakeup (struct TN_Task ∗ task)

Wake up task from sleep.

Task is woken up if only it sleeps because of call to tn_task_sleep(). If task sleeps for some another reason,
task won’t be woken up, and tn_task_wakeup() returns TN_RC_WSTATE.

After this call, tn_task_sleep() returns TN_RC_OK.

(refer to Legend for details)

Parameters

task sleeping task to wake up

Returns

• TN_RC_OK if successful

• TN_RC_WSTATE if task is not sleeping, or it is sleeping for some reason other than tn_task_←↩
sleep() call.

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.12.3.6 enum TN_RCode tn_task_iwakeup (struct TN_Task ∗ task)

The same as tn_task_wakeup() but for using in the ISR.

(refer to Legend for details)

17.12.3.7 enum TN_RCode tn_task_activate (struct TN_Task ∗ task)

Activate task that is in DORMANT state, that is, it was either just created by tn_task_create() without TN_←↩
TASK_CREATE_OPT_START option, or terminated.

Task is moved from DORMANT state to the RUNNABLE state.

(refer to Legend for details)

Parameters

task dormant task to activate

Returns

• TN_RC_OK if successful

• TN_RC_WSTATE if task is not dormant

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

See also

TN_TaskState

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

98 File Documentation

17.12.3.8 enum TN_RCode tn_task_iactivate (struct TN_Task ∗ task)

The same as tn_task_activate() but for using in the ISR.

(refer to Legend for details)

17.12.3.9 enum TN_RCode tn_task_release_wait (struct TN_Task ∗ task)

Release task from WAIT state, independently of the reason of waiting.

If task is in WAIT state, it is moved to RUNNABLE state. If task is in WAIT+SUSPEND state, it is moved to
SUSPEND state.

TN_RC_FORCED is returned to the waiting task.

(refer to Legend for details)

Attention

Usage of this function is discouraged, since the need for it indicates bad software design

Parameters

task task waiting for anything

Returns

• TN_RC_OK if successful

• TN_RC_WSTATE if task is not waiting for anything

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

See also

TN_TaskState

17.12.3.10 enum TN_RCode tn_task_irelease_wait (struct TN_Task ∗ task)

The same as tn_task_release_wait() but for using in the ISR.

(refer to Legend for details)

17.12.3.11 void tn_task_exit (enum TN_TaskExitOpt opts)

This function terminates the currently running task.

The task is moved to the DORMANT state.

After exiting, the task may be either deleted by the tn_task_delete() function call or reactivated by the tn_←↩
task_activate() / tn_task_iactivate() function call. In this case task starts execution from beginning
(as after creation/activation). The task will have the lowest precedence among all tasks with the same priority in the
RUNNABLE state.

If this function is invoked with TN_TASK_EXIT_OPT_DELETE option set, the task will be deleted after termination
and cannot be reactivated (needs recreation).

(refer to Legend for details)

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.12 core/tn_tasks.h File Reference 99

Returns

Returns if only called from wrong context. Normally, it never returns (since calling task becomes terminated)

See also

TN_TASK_EXIT_OPT_DELETE
tn_task_delete()
tn_task_activate()
tn_task_iactivate()

17.12.3.12 enum TN_RCode tn_task_terminate (struct TN_Task ∗ task)

This function is similar to tn_task_exit() but it terminates any task other than currently running one.

After task is terminated, the task may be either deleted by the tn_task_delete() function call or reactivated by
the tn_task_activate() / tn_task_iactivate() function call. In this case task starts execution from
beginning (as after creation/activation). The task will have the lowest precedence among all tasks with the same
priority in the RUNNABLE state.

(refer to Legend for details)

Parameters

task task to terminate

Returns

• TN_RC_OK if successful

• TN_RC_WSTATE if task is already dormant

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.12.3.13 enum TN_RCode tn_task_delete (struct TN_Task ∗ task)

This function deletes the task specified by the task.

The task must be in the DORMANT state, otherwise TN_RC_WCONTEXT will be returned.

This function resets the id_task field in the task structure to 0 and removes the task from the system tasks list.
The task can not be reactivated after this function call (the task must be recreated).

(refer to Legend for details)

Parameters

task dormant task to delete

Returns

• TN_RC_OK if successful

• TN_RC_WSTATE if task is not dormant

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

100 File Documentation

17.12.3.14 enum TN_RCode tn_task_state_get (struct TN_Task ∗ task, enum TN_TaskState ∗ p_state)

Get current state of the task; note that returned state is a bitmask, that is, states could be combined with each other.

Currently, only WAIT and SUSPEND states are allowed to be set together. Nevertheless, it would be probably good
idea to test individual bits in the returned value instead of plain comparing values.

Note that if something goes wrong, variable pointed to by p_state isn’t touched.

(refer to Legend for details)

Parameters

task task to get state of
p_state pointer to the location where to store state of the task

Returns

state of the task

17.12.3.15 enum TN_RCode tn_task_change_priority (struct TN_Task ∗ task, int new_priority)

Set new priority for task.

If priority is 0, then task’s base_priority is set.

(refer to Legend for details)

Attention

this function is obsolete and will probably be removed

17.13 core/tn_timer.h File Reference

17.13.1 Detailed Description

Timer is a kernel object that is used to ask the kernel to call some user-provided function at a particular time in the
future, based on the system timer tick.

If you need to repeatedly wake up particular task, you can create semaphore which you should wait for in the task,
and signal in the timer callback (remember that you should use tn_sem_isignal() in this callback, since it is
called from an ISR).

If you need to perform rather fast action (such as toggle some pin, or the like), consider doing that right in the timer
callback, in order to avoid context switch overhead.

The timer callback approach provides ultimate flexibility.

In the spirit of TNeoKernel, timers are as lightweight as possible. That’s why there is only one type of timer: the
single-shot timer. If you need your timer to fire repeatedly, you can easily restart it from the timer function by the
tn_timer_start(), so it’s not a problem.

When timer fires, the user-provided function is called. Be aware of the following:

• Function is called from an ISR context (namely, from system timer ISR, by the tn_tick_int_←↩
processing());

• Function is called with global interrupts disabled.

Consequently:

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.13 core/tn_timer.h File Reference 101

• It’s legal to call interrupt services from this function;

• You should make sure that your interrupt stack is enough for this function;

• The function should be as fast as possible;

• The function should not enable interrupts unconditionally. Consider using tn_arch_sr_save_int_←↩
dis() and tn_arch_sr_restore() if you need.

See TN_TimerFunc for the prototype of the function that could be scheduled.

17.13.2 Implementation of timers

Although you don’t have to understand the implementation of timers to use them, it is probably worth knowing, partic-
ularly because the kernel have an option TN_TICK_LISTS_CNT to customize the balance between performance
of tn_tick_int_processing() and memory occupied by timers.

The easiest implementation of timers could be something like this: we have just a single list with all active timers,
and at every system tick we should walk through all the timers in this list, and do the following with each timer:

• Decrement timeout by 1

• If new timeout is 0, then remove that timer from the list (i.e. make timer inactive), and fire the appropriate
timer function.

This approach has drawbacks:

• We can’t manage timers from the function called by timer. If we do so (say, if we start new timer), then the
timer list gets modified. But we are currently iterating through this list, so, it’s quite easy to mix things up.

• It is inefficient on rather large amount of timers and/or with large timeouts: we should iterate through all of
them each system tick.

The latter is probably not so critical in the embedded world since large amount of timers is unlikely there; whereas
the former is actually notable.

So, different approach was applied. The main idea is taken from the mainline Linux kernel source, but the implemen-
tation was simplified much because (1) embedded systems have much less resources, and (2) the kernel doesn’t
need to scale as well as Linux does. You can read about Linux timers implementation in the book "Linux Device
Drivers", 3rd edition:

• Time, Delays, and Deferred Work

– Kernel Timers

* The Implementation of Kernel Timers

This book is freely available at http://lwn.net/Kernel/LDD3/ .

So, TNeoKernel’s implementation:

We have configurable value N that is a power of two, typical values are 4, 8 or 16.

If the timer expires in the next 1 to (N - 1) system ticks, it is added to one of the N lists (the so-called "tick" lists)
devoted to short-range timers using the least significant bits of the timeout value. If it expires farther in the future,
it is added to the "generic" list.

Each N-th system tick, all the timers from "generic" list are walked through, and the following is performed with each
timer:

• timeout value decremented by N

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

http://lwn.net/Kernel/LDD3/

102 File Documentation

• if resulting timeout is less than N, timer is moved to the appropriate "tick" list.

At every system tick, all the timers from current "tick" list are fired unconditionally. This is an efficient and nice
solution.

The attentive reader may want to ask why do we use (N - 1) "tick" lists if we actually have N lists. That’s because,
again, we want to be able to modify timers from the timer function. If we use N lists, and user wants to add new timer
with timeout equal to N, then new timer will be added to the same list which is iterated through at the moment,
and things will be mixed up.

If we use (N - 1) lists, we are guaranteed that new timers can’t be added to the current "tick" list while we are
iterating through it. (although timer can be deleted from that list, but it’s ok)

The N in the TNeoKernel is configured by the compile-time option TN_TICK_LISTS_CNT.

Definition in file tn_timer.h.

Data Structures

• struct TN_Timer

Timer.

Typedefs

• typedef void(TN_TimerFunc)(struct TN_Timer ∗timer, void ∗p_user_data)

Prototype of the function that should be called by timer.

Functions

• enum TN_RCode tn_timer_create (struct TN_Timer ∗timer, TN_TimerFunc ∗func, void ∗p_user_data)

Construct the timer.

• enum TN_RCode tn_timer_delete (struct TN_Timer ∗timer)

Destruct the timer.

• enum TN_RCode tn_timer_start (struct TN_Timer ∗timer, TN_Timeout timeout)

Start or restart the timer: that is, schedule the timer’s function (given to tn_timer_create()) to be called later
by the kernel.

• enum TN_RCode tn_timer_cancel (struct TN_Timer ∗timer)

If timer is active, cancel it.

• enum TN_RCode tn_timer_set_func (struct TN_Timer ∗timer, TN_TimerFunc ∗func, void ∗p_user_data)

Set user-provided function and pointer to user data for the timer.

• enum TN_RCode tn_timer_is_active (struct TN_Timer ∗timer, BOOL ∗p_is_active)

Returns whether given timer is active or inactive.

• enum TN_RCode tn_timer_time_left (struct TN_Timer ∗timer, TN_Timeout ∗p_time_left)

Returns how many system timer ticks (at most) is left for the timer to expire.

17.13.3 Typedef Documentation

17.13.3.1 typedef void(TN_TimerFunc)(struct TN_Timer ∗timer, void ∗p_user_data)

Prototype of the function that should be called by timer.

When timer fires, the user-provided function is called. Be aware of the following:

• Function is called from ISR context (namely, from system timer ISR, by the tn_tick_int_←↩
processing());

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.13 core/tn_timer.h File Reference 103

• Function is called with global interrupts disabled.

Consequently:

• It’s legal to call interrupt services from this function;

• The function should be as fast as possible.

Parameters

timer Timer that caused function to be called
p_user_data The user-provided pointer given to tn_timer_create().

Definition at line 197 of file tn_timer.h.

17.13.4 Function Documentation

17.13.4.1 enum TN_RCode tn_timer_create (struct TN_Timer ∗ timer, TN_TimerFunc ∗ func, void ∗ p_user_data)

Construct the timer.

id_timer field should not contain TN_ID_TIMER, otherwise, TN_RC_WPARAM is returned.

(refer to Legend for details)

Parameters

timer Pointer to already allocated struct TN_Timer
func Function to be called by timer, can’t be NULL. See TN_TimerFunc()

p_user_data User data pointer that is given to user-provided func.

Returns

• TN_RC_OK if timer was successfully created;

• TN_RC_WPARAM if wrong params were given.

17.13.4.2 enum TN_RCode tn_timer_delete (struct TN_Timer ∗ timer)

Destruct the timer.

If the timer is active, it is cancelled first.

(refer to Legend for details)

Parameters

timer timer to destruct

Returns

• TN_RC_OK if timer was successfully deleted;

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

104 File Documentation

17.13.4.3 enum TN_RCode tn_timer_start (struct TN_Timer ∗ timer, TN_Timeout timeout)

Start or restart the timer: that is, schedule the timer’s function (given to tn_timer_create()) to be called later
by the kernel.

See TN_TimerFunc().

It is legal to restart already active timer. In this case, the timer will be cancelled first.

(refer to Legend for details)

Parameters

timer Timer to start
timeout Number of system ticks after which timer should fire (i.e. function should be called). Note

that timeout can’t be TN_WAIT_INFINITE or 0.

Returns

• TN_RC_OK if timer was successfully started;

• TN_RC_WCONTEXT if called from wrong context;

• TN_RC_WPARAM if wrong params were given: say, timeout is either TN_WAIT_INFINITE or 0.

• If TN_CHECK_PARAM is non-zero, additional return code is available: TN_RC_INVALID_OBJ.

17.13.4.4 enum TN_RCode tn_timer_cancel (struct TN_Timer ∗ timer)

If timer is active, cancel it.

If timer is already inactive, nothing is changed.

(refer to Legend for details)

Parameters

timer Timer to cancel

Returns

• TN_RC_OK if timer was successfully cancelled;

• TN_RC_WCONTEXT if called from wrong context;

• If TN_CHECK_PARAM is non-zero, additional return codes are available: TN_RC_WPARAM and TN_←↩
RC_INVALID_OBJ.

17.13.4.5 enum TN_RCode tn_timer_set_func (struct TN_Timer ∗ timer, TN_TimerFunc ∗ func, void ∗ p_user_data)

Set user-provided function and pointer to user data for the timer.

Can be called if timer is either active or inactive.

(refer to Legend for details)

Parameters

timer Pointer to timer

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.14 tn.h File Reference 105

func Function to be called by timer, can’t be NULL. See TN_TimerFunc()
p_user_data User data pointer that is given to user-provided func.

Returns

• TN_RC_OK if operation was successfull;

• TN_RC_WPARAM if wrong params were given.

17.13.4.6 enum TN_RCode tn_timer_is_active (struct TN_Timer ∗ timer, BOOL ∗ p_is_active)

Returns whether given timer is active or inactive.

(refer to Legend for details)

Parameters

timer Pointer to timer
p_is_active Pointer to BOOL variable in which resulting value should be stored

Returns

• TN_RC_OK if operation was successfull;

• TN_RC_WPARAM if wrong params were given.

17.13.4.7 enum TN_RCode tn_timer_time_left (struct TN_Timer ∗ timer, TN_Timeout ∗ p_time_left)

Returns how many system timer ticks (at most) is left for the timer to expire.

If timer is inactive, 0 is returned.

(refer to Legend for details)

Parameters

timer Pointer to timer
p_time_left Pointer to TN_Timeout variable in which resulting value should be stored

Returns

• TN_RC_OK if operation was successfull;

• TN_RC_WPARAM if wrong params were given.

17.14 tn.h File Reference

17.14.1 Detailed Description

The main kernel header file that should be included by user application; it merely includes subsystem-specific kernel
headers.

Definition in file tn.h.

17.15 tn_cfg_default.h File Reference

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

106 File Documentation

17.15.1 Detailed Description

TNeoKernel default configuration file, to be copied as tn_cfg.h.

This project is intended to be built as a library, separately from main project (although nothing prevents you from
bundling things together, if you want to).

There are various options available which affects API and behavior of the kernel. But these options are specific for
particular project, and aren’t related to the kernel itself, so we need to keep them separately.

To this end, file tn.h (the main kernel header file) includes tn_cfg.h, which isn’t included in the repository
(even more, it is added to .hgignore list actually). Instead, default configuration file tn_cfg_default.h is
provided, and when you just cloned the repository, you might want to copy it as tn_cfg.h. Or even better, if your
filesystem supports symbolic links, copy it somewhere to your main project’s directory (so that you can add it to your
VCS there), and create symlink to it named tn_cfg.h in the TNeoKernel source directory, like this:

$ cd /path/to/tneokernel/src
$ cp ./tn_cfg_default.h /path/to/main/project/lib_cfg/tn_cfg.h
$ ln -s /path/to/main/project/lib_cfg/tn_cfg.h ./tn_cfg.h

Default configuration file contains detailed comments, so you can read them and configure behavior as you like.

Definition in file tn_cfg_default.h.

Macros

• #define TN_PRIORITIES_CNT TN_PRIORITIES_MAX_CNT

Number of priorities that can be used by application, plus one for idle task (which has the lowest priority).

• #define TN_CHECK_PARAM 1

Enables additional param checking for most of the system functions.

• #define TN_DEBUG 0

Allows additional internal self-checking, useful to catch internal TNeoKernel bugs as well as illegal kernel usage (e.g.

• #define TN_OLD_TNKERNEL_NAMES 1

Whether old TNKernel names (definitions, functions, etc) should be available.

• #define TN_USE_MUTEXES 1

Whether mutexes API should be available.

• #define TN_MUTEX_REC 1

Whether mutexes should allow recursive locking/unlocking.

• #define TN_MUTEX_DEADLOCK_DETECT 1

Whether RTOS should detect deadlocks and notify user about them via callback.

• #define TN_TICK_LISTS_CNT 8

Number of "tick" lists of timers, must be a power or two; minimum value: 2; typical values: 4, 8 or 16.

• #define TN_API_MAKE_ALIG_ARG TN_API_MAKE_ALIG_ARG__SIZE

API option for MAKE_ALIG() macro.

17.15.2 Macro Definition Documentation

17.15.2.1 #define TN_PRIORITIES_CNT TN_PRIORITIES_MAX_CNT

Number of priorities that can be used by application, plus one for idle task (which has the lowest priority).

This value can’t be higher than architecture-dependent value TN_PRIORITIES_MAX_CNT, which typically equals
to width of int type. So, for 32-bit systems, max number of priorities is 32.

But usually, application needs much less: I can imagine at most 4-5 different priorities, plus one for the idle task.

Do note also that each possible priority level takes RAM: two pointers for linked list and one short for time slice
value, so on 32-bit system it takes 10 bytes. So, with default value of 32 priorities available, it takes 320 bytes. If
you set it, say, to 5, you save 270 bytes, which might be notable.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

17.15 tn_cfg_default.h File Reference 107

Default: TN_PRIORITIES_MAX_CNT.

Definition at line 94 of file tn_cfg_default.h.

17.15.2.2 #define TN_CHECK_PARAM 1

Enables additional param checking for most of the system functions.

It’s surely useful for debug, but probably better to remove in release. If it is set, most of the system functions are
able to return two additional codes:

• TN_RC_WPARAM if wrong params were given;

• TN_RC_INVALID_OBJ if given pointer doesn’t point to a valid object. Object validity is checked by means
of the special ID field of type enum TN_ObjId.

See also

enum TN_ObjId

Definition at line 111 of file tn_cfg_default.h.

17.15.2.3 #define TN_DEBUG 0

Allows additional internal self-checking, useful to catch internal TNeoKernel bugs as well as illegal kernel usage
(e.g.

sleeping in the idle task callback). Produces a couple of extra instructions which usually just causes debugger to
stop if something goes wrong.

Definition at line 121 of file tn_cfg_default.h.

17.15.2.4 #define TN_OLD_TNKERNEL_NAMES 1

Whether old TNKernel names (definitions, functions, etc) should be available.

If you’re porting your existing application written for TNKernel, it is definitely worth enabling. If you start new project
with TNeoKernel from scratch, it’s better to avoid old names.

Definition at line 131 of file tn_cfg_default.h.

17.15.2.5 #define TN_MUTEX_DEADLOCK_DETECT 1

Whether RTOS should detect deadlocks and notify user about them via callback.

See also

see tn_callback_deadlock_set()

Definition at line 155 of file tn_cfg_default.h.

17.15.2.6 #define TN_TICK_LISTS_CNT 8

Number of "tick" lists of timers, must be a power or two; minimum value: 2; typical values: 4, 8 or 16.

Refer to the Implementation of timers for details.

Shortly: this value represents number of elements in the array of struct TN_ListItem, on 32-bit system each
element takes 8 bytes.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

108 File Documentation

The larger value, the more memory is needed, and the faster system timer ISR works. If your application has a lot
of timers and/or sleeping tasks, consider incrementing this value; otherwise, default value should work for you.

Definition at line 173 of file tn_cfg_default.h.

17.15.2.7 #define TN_API_MAKE_ALIG_ARG TN_API_MAKE_ALIG_ARG__SIZE

API option for MAKE_ALIG() macro.

There is a terrible mess with MAKE_ALIG() macro: original TNKernel docs specify that the argument of it should
be the size to align, but almost all ports, including "original" one, defined it so that it takes type, not size.

But the port by AlexB implemented it differently (i.e. accordingly to the docs)

When I was moving from the port by AlexB to another one, do you have any idea how much time it took me to figure
out why do I have rare weird bug? :)

So, available options:

• TN_API_MAKE_ALIG_ARG__TYPE: In this case, you should use macro like this: TN_MAKE_ALI←↩
G(struct my_struct) This way is used in the majority of TNKernel ports. (actually, in all ports except
the one by AlexB)

• TN_API_MAKE_ALIG_ARG__SIZE: In this case, you should use macro like this: TN_MAKE_ALI←↩
G(sizeof(struct my_struct)) This way is stated in TNKernel docs and used in the port for dsPI←↩
C/PIC24/PIC32 by AlexB.

Definition at line 205 of file tn_cfg_default.h.

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

Index

TN_CONTEXT_ISR
tn_sys.h, 88

TN_CONTEXT_NONE
tn_sys.h, 88

TN_CONTEXT_TASK
tn_sys.h, 88

TN_EVENTGRP_OP_CLEAR
tn_eventgrp.h, 70

TN_EVENTGRP_OP_SET
tn_eventgrp.h, 70

TN_EVENTGRP_OP_TOGGLE
tn_eventgrp.h, 70

TN_EVENTGRP_WMODE_AND
tn_eventgrp.h, 69

TN_EVENTGRP_WMODE_OR
tn_eventgrp.h, 69

TN_ID_DATAQUEUE
tn_common.h, 62

TN_ID_EVENTGRP
tn_common.h, 62

TN_ID_FSMEMORYPOOL
tn_common.h, 62

TN_ID_MUTEX
tn_common.h, 62

TN_ID_SEMAPHORE
tn_common.h, 62

TN_ID_TASK
tn_common.h, 62

TN_ID_TIMER
tn_common.h, 62

TN_MUTEX_PROT_CEILING
tn_mutex.h, 77

TN_MUTEX_PROT_INHERIT
tn_mutex.h, 77

TN_RC_DELETED
tn_common.h, 63

TN_RC_FORCED
tn_common.h, 63

TN_RC_ILLEGAL_USE
tn_common.h, 63

TN_RC_INTERNAL
tn_common.h, 63

TN_RC_INVALID_OBJ
tn_common.h, 63

TN_RC_OK
tn_common.h, 63

TN_RC_OVERFLOW
tn_common.h, 63

TN_RC_TIMEOUT

tn_common.h, 63
TN_RC_WCONTEXT

tn_common.h, 63
TN_RC_WPARAM

tn_common.h, 63
TN_RC_WSTATE

tn_common.h, 63
TN_STATE_FLAG__DEADLOCK

tn_sys.h, 88
TN_STATE_FLAG__SYS_RUNNING

tn_sys.h, 88
TN_TASK_CREATE_OPT_IDLE

tn_tasks.h, 94
TN_TASK_CREATE_OPT_START

tn_tasks.h, 94
TN_TASK_EXIT_OPT_DELETE

tn_tasks.h, 94
TN_TASK_STATE_DORMANT

tn_tasks.h, 93
TN_TASK_STATE_NONE

tn_tasks.h, 93
TN_TASK_STATE_RUNNABLE

tn_tasks.h, 93
TN_TASK_STATE_SUSPEND

tn_tasks.h, 93
TN_TASK_STATE_WAIT

tn_tasks.h, 93
TN_TASK_STATE_WAITSUSP

tn_tasks.h, 93
TN_WAIT_REASON_DQUE_WRECEIVE

tn_tasks.h, 93
TN_WAIT_REASON_DQUE_WSEND

tn_tasks.h, 93
TN_WAIT_REASON_EVENT

tn_tasks.h, 93
TN_WAIT_REASON_MUTEX_C

tn_tasks.h, 93
TN_WAIT_REASON_MUTEX_I

tn_tasks.h, 93
TN_WAIT_REASON_NONE

tn_tasks.h, 93
TN_WAIT_REASON_SEM

tn_tasks.h, 93
TN_WAIT_REASON_SLEEP

tn_tasks.h, 93
TN_WAIT_REASON_WFIXMEM

tn_tasks.h, 94
tn_common.h

TN_ID_DATAQUEUE, 62

110 INDEX

TN_ID_EVENTGRP, 62
TN_ID_FSMEMORYPOOL, 62
TN_ID_MUTEX, 62
TN_ID_SEMAPHORE, 62
TN_ID_TASK, 62
TN_ID_TIMER, 62
TN_RC_DELETED, 63
TN_RC_FORCED, 63
TN_RC_ILLEGAL_USE, 63
TN_RC_INTERNAL, 63
TN_RC_INVALID_OBJ, 63
TN_RC_OK, 63
TN_RC_OVERFLOW, 63
TN_RC_TIMEOUT, 63
TN_RC_WCONTEXT, 63
TN_RC_WPARAM, 63
TN_RC_WSTATE, 63

tn_eventgrp.h
TN_EVENTGRP_OP_CLEAR, 70
TN_EVENTGRP_OP_SET, 70
TN_EVENTGRP_OP_TOGGLE, 70
TN_EVENTGRP_WMODE_AND, 69
TN_EVENTGRP_WMODE_OR, 69

tn_mutex.h
TN_MUTEX_PROT_CEILING, 77
TN_MUTEX_PROT_INHERIT, 77

tn_sys.h
TN_CONTEXT_ISR, 88
TN_CONTEXT_NONE, 88
TN_CONTEXT_TASK, 88
TN_STATE_FLAG__DEADLOCK, 88
TN_STATE_FLAG__SYS_RUNNING, 88

tn_tasks.h
TN_TASK_CREATE_OPT_IDLE, 94
TN_TASK_CREATE_OPT_START, 94
TN_TASK_EXIT_OPT_DELETE, 94
TN_TASK_STATE_DORMANT, 93
TN_TASK_STATE_NONE, 93
TN_TASK_STATE_RUNNABLE, 93
TN_TASK_STATE_SUSPEND, 93
TN_TASK_STATE_WAIT, 93
TN_TASK_STATE_WAITSUSP, 93
TN_WAIT_REASON_DQUE_WRECEIVE, 93
TN_WAIT_REASON_DQUE_WSEND, 93
TN_WAIT_REASON_EVENT, 93
TN_WAIT_REASON_MUTEX_C, 93
TN_WAIT_REASON_MUTEX_I, 93
TN_WAIT_REASON_NONE, 93
TN_WAIT_REASON_SEM, 93
TN_WAIT_REASON_SLEEP, 93
TN_WAIT_REASON_WFIXMEM, 94

Generated on Mon Oct 20 2014 18:23:46 for TNeoKernel by Doxygen

	1 TNeoKernel overview
	2 Foreword
	3 Quick guide
	3.1 Time ticks
	3.2 Starting the kernel
	3.3 Round-robin scheduling

	4 Interrupts
	4.1 Interrupt stack

	5 Building the project
	5.1 Configuration file
	5.2 PIC32 port: MPLABX project

	6 PIC32 details
	6.1 Context switch
	6.2 Interrupts

	7 Why reimplement TNKernel
	7.1 Essential problems of TNKernel
	7.2 Examples of poor implementation
	7.2.1 One entry point, one exit point
	7.2.2 Don't repeat yourself
	7.2.3 Macros that return from function
	7.2.4 Code for doubly-linked lists

	7.3 Bugs of TNKernel 2.7

	8 Differences from TNKernel API
	8.1 Incompatible API changes
	8.1.1 System startup
	8.1.2 Task creation API
	8.1.3 Task wakeup count, activate count, suspend count
	8.1.4 Fixed memory pool: non-aligned address or block size
	8.1.5 Task service return values cleaned
	8.1.6 Force task releasing from wait
	8.1.7 Return code of tn_task_sleep()
	8.1.8 Events API is changed almost completely
	8.1.9 Zero timeout given to system functions

	8.2 New features
	8.2.1 Timers
	8.2.2 Recursive mutexes
	8.2.3 Mutex deadlock detection
	8.2.4 New system services added

	8.3 Compatible API changes
	8.3.1 Macro MAKE_ALIG()
	8.3.2 Convenience macros for stack arrays definition
	8.3.3 Convenience macros for fixed memory block pool buffers definition
	8.3.4 Things renamed
	8.3.5 We should wait for semaphore, not acquire it

	8.4 Changes that do not affect API directly
	8.4.1 No timer task

	9 Unit tests
	9.1 How tests are implemented
	9.2 Get unit-tests

	10 Plans
	10.1 Event connecting

	11 Changelog
	11.1 v1.03
	11.2 v1.02
	11.3 v1.01
	11.4 v1.0

	12 Thanks
	13 Legend
	14 Data Structure Index
	14.1 Data Structures

	15 File Index
	15.1 File List

	16 Data Structure Documentation
	16.1 TN_DQueue Struct Reference
	16.1.1 Detailed Description

	16.2 TN_DQueueTaskWait Struct Reference
	16.2.1 Detailed Description

	16.3 TN_EGrpLink Struct Reference
	16.3.1 Detailed Description

	16.4 TN_EGrpTaskWait Struct Reference
	16.4.1 Detailed Description

	16.5 TN_EventGrp Struct Reference
	16.5.1 Detailed Description

	16.6 TN_FMem Struct Reference
	16.6.1 Detailed Description
	16.6.2 Field Documentation
	16.6.2.1 block_size
	16.6.2.2 start_addr

	16.7 TN_FMemTaskWait Struct Reference
	16.7.1 Detailed Description

	16.8 TN_Mutex Struct Reference
	16.8.1 Detailed Description

	16.9 TN_Sem Struct Reference
	16.9.1 Detailed Description

	16.10 TN_Task Struct Reference
	16.10.1 Detailed Description
	16.10.2 Field Documentation
	16.10.2.1 stack_top
	16.10.2.2 deadlock_list
	16.10.2.3 subsys_wait
	16.10.2.4 priority_already_updated
	16.10.2.5 waited

	16.11 TN_Timer Struct Reference
	16.11.1 Detailed Description

	17 File Documentation
	17.1 arch/example/tn_arch_example.h File Reference
	17.1.1 Detailed Description
	17.1.2 Macro Definition Documentation
	17.1.2.1 _TN_FFS
	17.1.2.2 _TN_FATAL_ERROR
	17.1.2.3 TN_ARCH_STK_ATTR_BEFORE
	17.1.2.4 TN_ARCH_STK_ATTR_AFTER
	17.1.2.5 TN_PRIORITIES_MAX_CNT
	17.1.2.6 TN_INTSAVE_DATA
	17.1.2.7 TN_INTSAVE_DATA_INT
	17.1.2.8 TN_INT_DIS_SAVE
	17.1.2.9 TN_INT_RESTORE
	17.1.2.10 TN_INT_IDIS_SAVE
	17.1.2.11 TN_INT_IRESTORE

	17.1.3 Typedef Documentation
	17.1.3.1 TN_UWord

	17.2 arch/pic32/tn_arch_pic32.h File Reference
	17.2.1 Detailed Description
	17.2.2 Macro Definition Documentation
	17.2.2.1 tn_soft_isr
	17.2.2.2 tn_srs_isr

	17.3 arch/tn_arch.h File Reference
	17.3.1 Detailed Description
	17.3.2 Function Documentation
	17.3.2.1 tn_arch_sr_save_int_dis
	17.3.2.2 tn_arch_sr_restore
	17.3.2.3 _tn_arch_stack_top_get
	17.3.2.4 _tn_arch_stack_init
	17.3.2.5 _tn_arch_context_switch_pend
	17.3.2.6 _tn_arch_context_switch_now_nosave

	17.4 core/tn_common.h File Reference
	17.4.1 Detailed Description
	17.4.2 Macro Definition Documentation
	17.4.2.1 TN_API_MAKE_ALIG_ARG__TYPE
	17.4.2.2 TN_API_MAKE_ALIG_ARG__SIZE
	17.4.2.3 TN_MAKE_ALIG_SIZE
	17.4.2.4 TN_MAKE_ALIG

	17.4.3 Typedef Documentation
	17.4.3.1 TN_Timeout

	17.4.4 Enumeration Type Documentation
	17.4.4.1 TN_ObjId
	17.4.4.2 TN_RCode

	17.5 core/tn_dqueue.h File Reference
	17.5.1 Detailed Description
	17.5.2 Function Documentation
	17.5.2.1 tn_queue_create
	17.5.2.2 tn_queue_delete
	17.5.2.3 tn_queue_send
	17.5.2.4 tn_queue_send_polling
	17.5.2.5 tn_queue_isend_polling
	17.5.2.6 tn_queue_receive
	17.5.2.7 tn_queue_receive_polling
	17.5.2.8 tn_queue_ireceive_polling
	17.5.2.9 tn_queue_eventgrp_connect
	17.5.2.10 tn_queue_eventgrp_disconnect

	17.6 core/tn_eventgrp.h File Reference
	17.6.1 Detailed Description
	17.6.2 Connecting an event group to other system objects
	17.6.3 Enumeration Type Documentation
	17.6.3.1 TN_EGrpWaitMode
	17.6.3.2 TN_EGrpOp

	17.6.4 Function Documentation
	17.6.4.1 tn_eventgrp_create
	17.6.4.2 tn_eventgrp_delete
	17.6.4.3 tn_eventgrp_wait
	17.6.4.4 tn_eventgrp_wait_polling
	17.6.4.5 tn_eventgrp_iwait_polling
	17.6.4.6 tn_eventgrp_modify
	17.6.4.7 tn_eventgrp_imodify

	17.7 core/tn_fmem.h File Reference
	17.7.1 Detailed Description
	17.7.2 Macro Definition Documentation
	17.7.2.1 TN_FMEM_BUF_DEF

	17.7.3 Function Documentation
	17.7.3.1 tn_fmem_create
	17.7.3.2 tn_fmem_delete
	17.7.3.3 tn_fmem_get
	17.7.3.4 tn_fmem_get_polling
	17.7.3.5 tn_fmem_iget_polling
	17.7.3.6 tn_fmem_release
	17.7.3.7 tn_fmem_irelease

	17.8 core/tn_mutex.h File Reference
	17.8.1 Detailed Description
	17.8.2 Enumeration Type Documentation
	17.8.2.1 TN_MutexProtocol

	17.8.3 Function Documentation
	17.8.3.1 tn_mutex_create
	17.8.3.2 tn_mutex_delete
	17.8.3.3 tn_mutex_lock
	17.8.3.4 tn_mutex_lock_polling
	17.8.3.5 tn_mutex_unlock

	17.9 core/tn_oldsymbols.h File Reference
	17.9.1 Detailed Description
	17.9.2 Macro Definition Documentation
	17.9.2.1 MAKE_ALIG

	17.10 core/tn_sem.h File Reference
	17.10.1 Detailed Description
	17.10.2 Function Documentation
	17.10.2.1 tn_sem_create
	17.10.2.2 tn_sem_delete
	17.10.2.3 tn_sem_signal
	17.10.2.4 tn_sem_isignal
	17.10.2.5 tn_sem_wait
	17.10.2.6 tn_sem_wait_polling
	17.10.2.7 tn_sem_iwait_polling

	17.11 core/tn_sys.h File Reference
	17.11.1 Detailed Description
	17.11.2 Macro Definition Documentation
	17.11.2.1 TN_STACK_ARR_DEF

	17.11.3 Typedef Documentation
	17.11.3.1 TN_CBUserTaskCreate
	17.11.3.2 TN_CBIdle
	17.11.3.3 TN_CBDeadlock

	17.11.4 Enumeration Type Documentation
	17.11.4.1 TN_StateFlag
	17.11.4.2 TN_Context

	17.11.5 Function Documentation
	17.11.5.1 tn_sys_start
	17.11.5.2 tn_tick_int_processing
	17.11.5.3 tn_sys_tslice_set
	17.11.5.4 tn_sys_time_get
	17.11.5.5 tn_callback_deadlock_set
	17.11.5.6 tn_sys_state_flags_get
	17.11.5.7 tn_sys_context_get
	17.11.5.8 tn_is_task_context
	17.11.5.9 tn_is_isr_context
	17.11.5.10 tn_cur_task_get
	17.11.5.11 tn_cur_task_body_get

	17.12 core/tn_tasks.h File Reference
	17.12.1 Detailed Description
	17.12.2 Enumeration Type Documentation
	17.12.2.1 TN_TaskState
	17.12.2.2 TN_WaitReason
	17.12.2.3 TN_TaskCreateOpt
	17.12.2.4 TN_TaskExitOpt

	17.12.3 Function Documentation
	17.12.3.1 tn_task_create
	17.12.3.2 tn_task_suspend
	17.12.3.3 tn_task_resume
	17.12.3.4 tn_task_sleep
	17.12.3.5 tn_task_wakeup
	17.12.3.6 tn_task_iwakeup
	17.12.3.7 tn_task_activate
	17.12.3.8 tn_task_iactivate
	17.12.3.9 tn_task_release_wait
	17.12.3.10 tn_task_irelease_wait
	17.12.3.11 tn_task_exit
	17.12.3.12 tn_task_terminate
	17.12.3.13 tn_task_delete
	17.12.3.14 tn_task_state_get
	17.12.3.15 tn_task_change_priority

	17.13 core/tn_timer.h File Reference
	17.13.1 Detailed Description
	17.13.2 Implementation of timers
	17.13.3 Typedef Documentation
	17.13.3.1 TN_TimerFunc

	17.13.4 Function Documentation
	17.13.4.1 tn_timer_create
	17.13.4.2 tn_timer_delete
	17.13.4.3 tn_timer_start
	17.13.4.4 tn_timer_cancel
	17.13.4.5 tn_timer_set_func
	17.13.4.6 tn_timer_is_active
	17.13.4.7 tn_timer_time_left

	17.14 tn.h File Reference
	17.14.1 Detailed Description

	17.15 tn_cfg_default.h File Reference
	17.15.1 Detailed Description
	17.15.2 Macro Definition Documentation
	17.15.2.1 TN_PRIORITIES_CNT
	17.15.2.2 TN_CHECK_PARAM
	17.15.2.3 TN_DEBUG
	17.15.2.4 TN_OLD_TNKERNEL_NAMES
	17.15.2.5 TN_MUTEX_DEADLOCK_DETECT
	17.15.2.6 TN_TICK_LISTS_CNT
	17.15.2.7 TN_API_MAKE_ALIG_ARG

	Index

